Cite this article as: |
Jin-sheng Yu, Run-qing Liu, Li Wang, Wei Sun, Hong Peng, and Yue-hua Hu, Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite–galena flotation separation, Int. J. Miner. Metall. Mater., 25(2018), No. 5, pp. 489-497. https://doi.org/10.1007/s12613-018-1595-6 |
Run-qing Liu E-mail: liurunqing@126.com
Wei Sun E-mail: sunmenghu@csu.edu.cn
[1] |
W.Q. Qin, Q. Wei, F. Jiao, N. Ling, P.P. Wang, and L.F. Ke, Effect of sodium pyrophosphate on the flotation separation of chalcopyrite from galena, Int. J. Min. Sci. Technol., 22(2012), No. 3, p. 345.
|
[2] |
C.A. Prestidge, J. Ralston, and R.S.C. Smart, The role of cyanide in the interaction of ethyl xanthate with galena, Colloids Surf. A, 81(1993), No. 93, p. 103.
|
[3] |
Z.J. Piao, D.Z. Wei, and Z.L. Liu, Influence of sodium 2,3-dihydroxypropyl dithiocarbonate on floatability of chalcopyrite and galena, Trans. Nonferrous Met. Soc. China, 24(2014), No. 10, p. 3343.
|
[4] |
Z.J. Piao, D.Z. Wei, Z.L. Liu, W.G. Liu, S.L. Gao, and M.Y. Li, Selective depression of galena and chalcopyrite by O,O-bis(2,3-dihydroxypropyl) dithiophosphate, Trans. Nonferrous Met. Soc. China, 23(2013), No. 10, p. 3063.
|
[5] |
R.Z. Liu, W.Q. Qin, F. Jiao, X.J. Wang, B. Pei, Y.J. Yang, and C.H. Lai, Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 265.
|
[6] |
P. Huang, L. Wang, and Q. Liu, Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena, Int. J. Miner. Process., 128(2014), p. 6.
|
[7] |
Q. Liu and Y.H Zhang, Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin, Miner. Eng., 13(2000), No. 13, p. 1405.
|
[8] |
J. Drzymala, J. Kapusniak, and P. Tomasik, Removal of lead minerals from copper industrial flotation concentrates by xanthate flotation in the presence of dextrin, Int. J. Miner. Process., 70(2003), No. 1-4, p. 147.
|
[9] |
P. Huang, M.L. Cao, and Q. Liu, Using chitosan as a selective depressant in the differential flotation of Cu–Pb sulfides, Int. J. Miner. Process., 106-109(2012), p. 8.
|
[10] |
J.J. Huang, P.X. Lin, L.J. Bo, and L.C. Xia, Viscosity reducer thin for water base drilling fluids used at temperatures up to 220℃, Oilfield Chem., 20(2003), No. 3, p. 197.
|
[11] |
C.X. Huang, Y.X. Leng, C.T. Xu, L.F. Xu, and L.J. Jia, A preliminary study on polyaspartic acid as viscosity reducer for water base drilling fluids, Oilfield Chem., 23(2006), No. 3, p. 193.
|
[12] |
H.A. Zhou, Calcium salt of polyacrylic acid (CPA) as performance improver for KHm/FCLS/CMC anti-caving drilling fluids, Oilfield Chem., 8(1991), No. 4, p. 276.
|
[13] |
A. Ansari and M. Pawlik, Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part I. Adsorption studies, Miner. Eng., 20(2007), No. 6, p. 600.
|
[14] |
J.G. Zhu and Y.S. Zhu, The Chemical Principle of Flotation Reagent, Central South University of Technology Press, Changsha, 1987, p. 284.
|
[15] |
R.Q. Liu, W. Sun, Y.H. Hu, and D.Z. Wang, Surface chemical study of the selective separation of chalcopyrite and marmatite, Min. Sci. Technol. China, 20(2010), No. 4, p. 542.
|
[16] |
G.Y. Liu, Z.H. Qiu, J.Y. Wang, Q.X. Liu, J.J. Xiao, H.B. Zeng, and H. Zhong, Study of N-isopropoxypropyl-N'-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS, J. Colloid Interface Sci., 437(2015), p. 42.
|
[17] |
L.K. Bailey and E. Peters, Decomposition of pyrite in acids by pressure leaching and anodization: the case for an electrochemical mechanism, Can. Metall. Q., 15(1976), No. 4, p. 333.
|
[18] |
Z. Wang, Y.L. Qian, L.H. Xu, B. Dai, J.H. Xiao, and K.B. Fu, Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant, Miner. Eng., 74(2015), p. 86.
|
[19] |
H.S. Altundogan, Cr(VI) removal from aqueous solution by iron(Ⅲ) hydroxide-loaded sugar beet pulp, Process Biochem., 40(2005), No. 3-4, p. 1443.
|
[20] |
E. Leese, J. Morton, P.H.E. Gardiner, and V.A. Carolan, The simultaneous detection of trivalent & hexavalent chromium in exhaled breath condensate: A feasibility study comparing workers and controls, Int. J. Hyg. Environ. Health, 220(2016), No. 2, p. 415.
|
[21] |
D. Mohan, U. Charles, and C.U. Pittman Jr., Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, J. Hazard. Mater., 137(2006), No. 2, p. 762.
|
[22] |
Y.B. Song and D.T. Chin, Current efficiency and polarization behavior of trivalent chromium electrodeposition process, Electrochim. Acta, 48(2002), No. 4, p. 349.
|
[23] |
J.H.O.J. Wijenberg, M. Steegh, M.P. Aarnts, K.R. Lammers, and J.M.C. Mol, Electrodeposition of mixed chromium metal-carbide-oxide coatings from a trivalent chromium-formate electrolyte without a buffering agent, Electrochim. Acta, 173(2015), p. 819.
|
[24] |
D. Fornasiero, F.S. Li, and J. Ralston, Oxidation of galena: Ⅱ. Electrokinetic study, J. Colloid Interface Sci., 164(1994), No. 2, p. 345.
|
[25] |
D. Fullston, D. Fornasiero, and J. Ralston, Zeta potential study of the oxidation of copper sulfide minerals, Colloids Surf. A, 146(1999), No. 1-3, p. 113.
|
[26] |
F. Ikumapayi, M. Makitalo, B. Johansson, and K.H. Rao, Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena, Miner. Eng., 39(2012), No. 12, p. 77.
|
[27] |
A.V. Shchukarev, I.M. Kravets, A.N. Buckley, and R. Woods, Submonolayer adsorption of alkyl xanthates on galena, Int. J. Miner. Process., 41(1994), No. 1-2, p. 99.
|
[28] |
K. Laajalehto, P. Nowak, A. Pomianowski, and E. Suoninen, Xanthate adsorption at PbS/aqueous interfaces: Comparison of XPS, infrared and electrochemical results, Colloids Surf., 57(1991), No. 2, p. 319.
|
[29] |
G.D. Giudici, A. Rossi, L. Fanfani, and P. Lattanzi, Mechanisms of galena dissolution in oxygen-saturated solutions: Evaluation of pH effect on apparent activation energies and mineral-water interface, Geochim. Cosmochim. Acta, 69(2005), No. 9, p. 2321.
|
[30] |
M.L. Farquhar, P.L. Wincott, R.A. Wogelius, and D.J. Vaughan, Electrochemical oxidation of the chalcopyrite surface: an XPS and AFM study in solution at pH 4, Appl. Surf. Sci., 218(2003), No. 1-4, p. 34.
|
[31] |
Z. He, G. Liu, X. Yang, and W. Liu, A novel surfactant, N, N-diethyl-N'-cyclohexylthiourea: Synthesis, flotation and adsorption on chalcopyrite, J. Ind. Eng. Chem., 37(2016), p. 107.
|
[32] |
G. Fairthorne, D. Fornasiero, and J. Ralston, Effect of oxidation on the collectorless flotation of chalcopyrite, Int. J. Miner. Process., 49(1997), No. 1-2, p. 31.
|
[33] |
N.H. Turner, J.S. Murday, and D.E. Ramaker, Quantitative determination of surface composition of sulfur-bearing anion mixtures by Auger electron spectroscopy, J. Vac. Sci. Technol., 17(1980), No. 1, p. 84.
|
[34] |
R.V. Siriwardane and J.M. Cook, Interactions of NO and SO2 with iron deposited on silca, J. Colloid Interface Sci., 104(1985), No. 1, p. 250.
|
[35] |
M. Volmer, M. Stratmann, and H. Viefhaus, Electrochemical and electron spectroscopic investigations of iron surfaces modified with thiols, Surf. Interface Anal., 16(1990), No. 1-12, p. 278.
|
[36] |
B.J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling, and K. Siegbahn, Molecular spectroscopyby means of ESCA Ⅱ. sulfur compounds. Correlation of electron binding energy with structure, Phys. Scr., 1(1970), No. 5-6, p. 286.
|
[37] |
Y.I. Kim and W.E. Hatfield, Electrical, magnetic and spectroscopic properties of tetrathiafulvalene charge transfer compounds with iron, ruthenium, rhodium and iridium halides, Inorg. Chim. Acta, 188(1991), No. 1, p. 15.
|
[38] |
A.R. Pratt, H.W. Nesbitt, and I.J. Muir, Generation of acids from mine waste: Oxidative leaching of pyrrhotite in dilute H2SO4, solutions at pH 3.0, Geochim. Cosmochim. Acta, 58(1994), No. 23, p. 5147.
|
[39] |
D. Brion, Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a I'air et dans I'eau, Appl. Surf. Sci., 5(1980), No. 2, p. 133.
|
[40] |
A.N. Buckley and R.Woods, An X-ray photoelectron spectroscopic study of the oxidation of galena, Appl. Surf. Sci., 17(1984), No. 4, p. 401.
|
[41] |
K. Laajalehto, I. Kartio, and P. Nowak, XPS study of clean metal sulfide surfaces, Appl. Surf. Sci., 81(1994), No. 1, p. 11.
|
[42] |
H. Konno, K. Sasaki, M. Tsunekawa, T. Takamori, and R. Furuichi, X-ray photoelectron spectroscopic analysis of surface products on pyrite formed by baterial leaching, Bunseki Kagaku, 40(1991), No. 11, p. 609.
|
[43] |
R.V. Siriwardane and J.M. Cook, Interactions of SO2 with sodium deposited on silica, J. Colloid Interface Sci., 108(1985), No. 2, p. 414.
|
[44] |
X.R. Yu, F. Liu, Z.Y. Wang, and Y. Chen, Auger parameters for sulfur-containing compounds using a mixed aluminum-silver excitation source, J. Electron Spectrosc. Relat. Phenom., 50(1990), No. 2, p. 159.
|