Bao-guang Wang, Wen-hui Yang, Hong-ye Gao, and Wen-huai Tian, Microstructure and phase composition of hypoeutectic Te–Bi alloy as evaporation source for photoelectric cathode, Int. J. Miner. Metall. Mater., 25(2018), No. 5, pp. 584-590. https://doi.org/10.1007/s12613-018-1605-8
Cite this article as:
Bao-guang Wang, Wen-hui Yang, Hong-ye Gao, and Wen-huai Tian, Microstructure and phase composition of hypoeutectic Te–Bi alloy as evaporation source for photoelectric cathode, Int. J. Miner. Metall. Mater., 25(2018), No. 5, pp. 584-590. https://doi.org/10.1007/s12613-018-1605-8
Research Article

Microstructure and phase composition of hypoeutectic Te–Bi alloy as evaporation source for photoelectric cathode

+ Author Affiliations
  • Corresponding authors:

    Hong-ye Gao    E-mail: qgaohongye@msn.com

    Wen-huai Tian    E-mail: wenhuaitian@ustb.edu.cn

  • Received: 13 December 2017Revised: 2 February 2018Accepted: 13 February 2018
  • A hypoeutectic 60Te–40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10-2 K·s-1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te–40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as [0001]Bi2Te3//[1213]Te and the direction of Te phase parallel to [1120]Bi2Te3 is deviated by 18° from N(2111)Te.
  • loading
  • [1]
    J.R. Rathod, H.S. Patel, K.D. Patel, and V.M. Pathak, Structural and optical characterization of zinc telluride thin films, Adv. Mater. Res., 665(2013), p. 254.
    [2]
    R. Yang, W.Q. Jie, and H. Liu, Characterization and chemical surface texturization of bulk ZnTe crystals grown by temperature gradient solution growth, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 755.
    [3]
    C.Y. Lu, X.M. Li, L.B. Tang, S.K. Lai, L. Rogée, K.S. Teng, F.L. Qian, L.L. Zhou, and S.P. Lau, Tellurium quantum dots: Preparation and optical properties, Appl. Phys. Lett., 111(2017), No. 6, art. No. 063112.
    [4]
    R.A. Loch, Cesium–Telluride and Magnesium for High Quality Photocathodes [Dissertation], University of Twente, Netherlands, 2005.
    [5]
    A. Aryshev, M. Shevelev, Y. Honda, N. Terunuma, and J. Urakawa, Femtosecond response time measurements of a Cs2Te photocathode, Appl. phys. Lett., 111(2017), No. 3, art. No. 033508.
    [6]
    H.G. Wang, W.J. Zhou, H.G. Li, J. Yue, E.Z. Zhang, Y. Wang, and X.H. Chang, Effective evaluation of the noise characteristics of solar-blind Cs2Te ultraviolet image intensifiers, Optik, 143(2017), p. 14.
    [7]
    X. Zhang, Y.J. Zhang, Y.S. Qian, C. Feng, J.Z. Zhang, Y.L. Jiang, and Z.Y. Pan, Spectral response characteristics of transmission-mode alkali telluride photocathodes working from vacuum-ultraviolet to ultraviolet band, J. Vac. Sci. Technol. B, 35(2017), No. 6, art. No. 061202-1.
    [8]
    Z. Yusof, A. Denchfield, M. Warren, J. Cardenas, N. Samuelson, L. Spentzouris, J. Power, and J. Zasadzinski, Photocathode quantum efficiency of ultra-thin Cs2Te layers on Nb substrates, Phys. Rev. Accel. Beams, 20(2017), No. 12, art. No. 123401
    [9]
    S. Cui, C. Boussard-plédel, L. Calvez, F. Rojas, K. Chen, H. Ning, M.J. Reece, T. Guizouarn, and B. Bureau, Comprehensive study of tellurium based glass ceramics for thermoelectric application, Adv. Appl. Ceram., 114(2015), Suppl. 1, p. S42.
    [10]
    E. Poindexter and L. Schultz, Ultraviolet-visible spectroscopic investigation of reaction of rubidium and tellurium in liquid ammonia solution, Spectrosc. Lett., 46(2013), No. 4, p. 264.
    [11]
    Y.L. Wei, B.S. Zhao, X.F. Sai, Y.A. Liu, and X.B.Cao, Development of cesium telluride UV cathode with high quantum efficiency and solar-blind characteristics, Chin. J. Vac. Sci. Technol., 32(2012), No. 7, p. 555.
    [12]
    A.H. Sommer, Spectrally selective (solar blind) UV photomultipliers with fluoride windows, Rev. Sci. Instrum., 32(1961), No. 3, p. 356.
    [13]
    J.W. Hu, B.G. Wang, C.Y. Wang, and W.H. Tian, Microstructure and composition of Te–In alloy prepared by near-rapid solidification process, J. Funct. Mater., 46(2015), No. 3, p. 21001.
    [14]
    B.G. Wang, J.W. Hu, C.Y. Wang, W.H. Yang, and W.H. Tian, The microstructure and composition of equilibrium phases formed in hypoeutectic Te–In alloy during solidification, Mater. Charact., 125(2017), p. 46.
    [15]
    Y.N. Dai, Binary Alloy Phase Diagrams, Science Press, Beijing, 2009.
    [16]
    R.E. Honig and D.A. Kramer, Vapor pressure data for the solid and liquid elements, RCA Rev., 30(1969), No. 2, p. 285.
    [17]
    X.P. Wu, L. Yuan, S.M. Zhou, S.Y. Lou, Y.Q. Wang, T. Gao, Y.B. Liu, and X.J. Shi, Controlled synthesis of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method, J. Nanopart. Res., 14(2012), No. 8, p. 1.
    [18]
    M.M. Rashad, A. El-Dissouky, H.M. Soliman, A.M. Elseman, H.M. Refaat, and A. Ebrahim, Structure evaluation of bismuth telluride (Bi2Te3) nanoparticles with enhanced Seebeck coefficient and low thermal conductivity, Mater. Res. Innovations, 2017. DOI: 10.1080/14328917.2017. 1320838.
    [19]
    M.N. Croker, R.S. Fidler, and R.W. Smith, The characterization of eutectic structures, Proc. R. Soc. Lond. A, 335(1973), No. 1600, p. 15.
    [20]
    N.P. Gorbachuk and V.R. Sidorko, Heat capacity and enthalpy of Bi2Si3 and Bi2Te3 in the temperature range 58–1012 K, Powder Metall. Met. Ceram., 43(2004), No. 5-6, p. 284.
    [21]
    M.M. Makhlouf and H.V. Guthy, The aluminum–silicon eutectic reaction: mechanisms and crystallography, J. Light Met., 1(2001), No. 4, p. 199.
    [22]
    G.F. Bolling, Some thermal data for Bi2Te3, J. Chem. Phys., 33(1960), No. 1, p. 305.
    [23]
    L.D. Zhao, B.P. Zhang, J.F. Li, H.L. Zhang, and W.S. Liu, Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering, Solid State Sci., 10(2008), No. 5, p. 651.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(476) PDF Downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return