Cite this article as: |
Cong Feng, Man-sheng Chu, Jue Tang, and Zheng-gen Liu, Effects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp. 609-622. https://doi.org/10.1007/s12613-018-1608-5 |
Man-sheng Chu E-mail: chums@smm.neu.edu.cn
[1] |
T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu, Reduction behavior of Panzhihua titanomagnetite concentrates with coal, Metall. Mater. Trans. B, 44(2013), No. 2, p. 252.
|
[2] |
E. Hukkanen and H. Walden, The production of vanadium and steel from titanomagnetites, Int. J. Miner. Process., 15(1985), No. 1-2, p. 89.
|
[3] |
G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and C.G. Bai, Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag, ISIJ Int., 55(2015), No. 7, p. 1367.
|
[4] |
H.X. Fang, H.Y. Li, and B. Xie, Effective chromium extraction from chromium-containing vanadium slag by sodium roasting and water leaching, ISIJ Int., 52(2012), No. 11, p. 1958.
|
[5] |
T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction-electric furnace process, Metals, 6(2016), No. 5, p.107.
|
[6] |
L.S. Zhao, L.N. Wang, D.S. Chen, H.X. Zhao, Y.H. Liu, and T. Qi, Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation, Trans. Nonferrous Met. Soc. China, 25(2015), No. 4, p. 1325.
|
[7] |
E.H. Wu, R. Zhu, S.L. Yang, L. Ma, J. Li, and J. Hou, Influences of technological parameters on smelting-separation process for metallized pellets of vanadium-bearing titanomagnetite concentrates, J. Iron Steel Res. Int., 23(2016), No. 7, p. 655.
|
[8] |
J. Kopfle and R. Hunter, Direct reduction's role in the world steel industry, Ironmaking Steelmaking, 35(2008), No. 4, p. 254.
|
[9] |
J.H. Luo, K.H. Qiu, P.C. Zhang, Y.C. Qiu, and J.H. Li, Studies of mineralogical characteristics of titano-magnetite in Hongge vanadium titano-magnetite, J. Mineral. Petrol., 33(2013), No. 3, p. 1.
|
[10] |
S.Y. Chen and M.S. Chu, A new process for the recovery of iron, vanadium, and titanium from vanadium titanomagnetite, J. South Afr. Inst. Min. Metall., 114(2014), No. 6, p. 481.
|
[11] |
J.Y. Li, E. Tang, C. Qin, Q. Zhou, X.G. Fan, and J. Wang, Experimental research on deep reduction and grinding separation of low Ti-bearing vanadium-titanium magnetite, Iron Steel Vanadium Titanium, 37(2016), No. 5, p. 25.
|
[12] |
M.Y. Wang, S.F. Zhou, X.W. Wang, B.F. Chen, H.X. Yang, S.K. Wang, and P.F. Luo, Recovery of iron from chromium vanadium-bearing titanomagnetite concentrate by direct reduction, JOM, 68(2016), No. 10, p. 2698.
|
[13] |
Z. Yan, G.H. Zhang, M. Zhang, M. Guo, and X.D. Wang, Preliminary research on law of Panzhihua vanadiun-titanium magnetite reduction-melting, J. Chin. Rare Earth Soc., 28(2010), No. 4, p. 359.
|
[14] |
Y. Liu, H.J. Guo, L. Guo, Y.Q. Li, and G.Y. Sun, Fluidized gas reduction-high temperature smelting tests of a beach iron placer, Met. Mine, 459(2014), No. 9, p. 43.
|
[15] |
S. Wang, Y.F. Guo, T. Jiang, F. Chen, and F.Q. Zheng, Comprehensive utilization and industrial development direction of vanadium-titanium magnetite, China Metall., 26(2016), No. 10, p. 40.
|
[16] |
L. Kolbeinsen, Modelling of DRI processes with two simultaneously active reducing gases, Steel Res. Int., 81(2010), No. 10, p. 819.
|
[17] |
W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Reduction kinetics of Hongge vanadium titanomagnetite-oxidized pellet with simulated shaft furnace gases, Steel Res. Int., 88(2017), No. 4, p. 1.
|
[18] |
W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Oxidation induration process and kinetics of Hongge vanadium titanium-bearing magnetite pellets, Ironmaking Steelmaking, 44(2017), No. 4, p. 294.
|
[19] |
J.O. Park, I.H. Jeong, S.M. Jung, and Y. Sasaki, Metal-slag separation behaviors of pellets consisted of iron, graphite and CaO-Al2O3 based slag powders, ISIJ Int., 54(2014), No. 7, p. 1530.
|
[20] |
Y.L. Zhen, G.H. Zhang, and K.C. Chou, Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles, Metall. Mater. Trans. B, 46(2015), No. 1, p. 155.
|
[21] |
H.R. Yue, T. Jiang, Q.Y. Zhang, P.N. Duan, and X.X. Xue, Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500℃, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 768.
|
[22] |
M. Pourabdoli, S. Raygan, H. Abdizadeh, and K. Hanaei, Production of high titania slag by Electro-Slag Crucible Melting (ESCM) process, Int. J. Miner. Process., 78(2006), No. 3, p. 175.
|
[23] |
Z.W. Zhang, S.C. Chen, X. Wu, Z.T. Guo, H.J. Yang, and G. Chen, Research on smelting and deep reduction of vanadic-titanomagnetite metallized pellet, Res. Iron Steel, 41(2013), No. 4, p. 4.
|
[24] |
I. Sohn and D.J. Min, A review of the relationship between viscosity and the structure of calcium-silicate-based slags in ironmaking, Steel Res. Int., 83(2012), No. 7, p. 611.
|
[25] |
Y.F. Ren, Lithofacies Mineralography of Iron and Steel Metallurgy, Metallurgical Industry Press, Beijing, 1982, p. 222.
|
[1] | Seshadri Seetharaman, Lijun Wang, Haijuan Wang. Slags containing transition metal (chromium and vanadium) oxides—Conversion from ticking bombs to valuable resources: Collaborative studies between KTH and USTB[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 750-757. doi: 10.1007/s12613-022-2424-5 |
[2] | Wei-dong Tang, Song-tao Yang, Xiang-xin Xue. Effect of Cr2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(8): 963-972. doi: 10.1007/s12613-019-1813-x |
[3] | Zhen Wang, Hao-yan Sun, Qing-shan Zhu. Effects of the continuous cooling process conditions on the crystallization and liberation characteristics of anosovite in Ti-bearing titanomagnetite smelting slag[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(9): 1120-1128. doi: 10.1007/s12613-019-1830-9 |
[4] | Zhi-yuan Ma, Yong Liu, Ji-kui Zhou, Mu-dan Liu, Zhen-zhen Liu. Recovery of vanadium and molybdenum from spent petrochemical catalyst by microwave-assisted leaching[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(1): 33-40. doi: 10.1007/s12613-019-1707-y |
[5] | Ya-yun Wang, Hui-fen Yang, Bo Jiang, Rong-long Song, Wei-hao Zhang. Comprehensive recovery of lead, zinc, and iron from hazardous jarosite residues using direct reduction followed by magnetic separation[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(2): 123-130. doi: 10.1007/s12613-018-1555-1 |
[6] | Wei Li, Nan Wang, Gui-qin Fu, Man-sheng Chu, Miao-yong Zhu. Effect of Cr2O3 addition on the oxidation induration mechanism of Hongge vanadium titanomagnetite pellets[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(4): 391-398. doi: 10.1007/s12613-018-1583-x |
[7] | Yi-min Zhang, Li-na Wang, De-sheng Chen, Wei-jing Wang, Ya-hui Liu, Hong-xin Zhao, Tao Qi. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(2): 131-144. doi: 10.1007/s12613-018-1556-0 |
[8] | Gong-jin Cheng, Zi-xian Gao, He Yang, Xiang-xin Xue. Effect of diboron trioxide on the crushing strength and smelting mechanism of high-chromium vanadium-titanium magnetite pellets[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(11): 1228-1240. doi: 10.1007/s12613-017-1515-1 |
[9] | Rui-min Jiao, Peng Xing, Cheng-yan Wang, Bao-zhong Ma, Yong-Qiang Chen. Recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation:process optimization and mineralogical study[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(9): 974-982. doi: 10.1007/s12613-017-1485-3 |
[10] | Yi-min Zhang, Ling-yun Yi, Li-na Wang, De-sheng Chen, Wei-jing Wang, Ya-hui Liu, Hong-xin Zhao, Tao Qi. A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite:sodium modification-direct reduction coupled process[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(5): 504-511. doi: 10.1007/s12613-017-1431-4 |
[11] | Yi-ran Liu, Jian-liang Zhang, Zheng-jian Liu, Xiang-dong Xing. Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand[J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(7): 760-768. doi: 10.1007/s12613-016-1290-4 |
[12] | Yuan-yuan Zhu, Ling-yun Yi, Wei Zhao, De-sheng Chen, Hong-xin Zhao, Tao Qi. Leaching of vanadium, sodium, and silicon from molten V-Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite[J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(8): 898-905. doi: 10.1007/s12613-016-1305-1 |
[13] | Mi Zhou, Tao Jiang, Song-tao Yang, Xiang-xin Xue. Sintering behaviors and consolidation mechanism of high-chromium vanadium and titanium magnetite fines[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(9): 917-925. doi: 10.1007/s12613-015-1150-7 |
[14] | Tu Hu, Xue-wei Lü, Chen-guang Bai, Gui-bao Qiu. Isothermal reduction of titanomagnetite concentrates containing coal[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(2): 131-137. doi: 10.1007/s12613-014-0875-z |
[15] | V. G. Efremenko, K. Shimizu, A. P. Cheiliakh, T. V. Kozarevskaya, K. Kusumoto, K. Yamamoto. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(11): 1096-1108. doi: 10.1007/s12613-014-1014-6 |
[16] | Jie Dang, Guo-hua Zhang, Xiao-jun Hu, Kuo-chih Chou. Non-isothermal reduction kinetics of titanomagnetite by hydrogen[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(12): 1134-1140. doi: 10.1007/s12613-013-0846-9 |
[17] | Xiao-rong Liu, Sheng-cai Jiang, Yan-jun Liu, Hui Li, Hua-jun Wang. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(10): 925-930. doi: 10.1007/s12613-013-0816-2 |
[18] | A. Hassani, A. Habibollahzadeh, S. Sadeghinejad. Influence of vanadium and chromium additions on the wear resistance of a gray cast iron[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(7): 602-607. doi: 10.1007/s12613-012-0601-7 |
[19] | Jin-yan Zhong, Min Sun, Da-bo Liu, Xiao-gang Li, Tian-qi Liu. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(3): 282-289. doi: 10.1007/s12613-010-0306-8 |
[20] | Yi Ren, Shuai Zhang, Shuang Wang, Wen-yue Liu. Experimental study on 830 MPa grade pipeline steel containing chromium[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(3): 273-277. doi: 10.1016/S1674-4799(09)60049-2 |
[1] | Andrey N. Dmitriev, Galina Y. Vitkina, Victor G. Zlobin, et al. A Study of the Possibility of Producing Annealed and Metallized Pellets from Titanomagnetite Concentrate. Materials, 2024, 17(21): 5338. https://doi.org/10.3390/ma17215338 | |
[2] | Zonghao Yang, Kejiang Li, Alberto Conejo, et al. Thermodynamic strategy for hydrogen-based direct reduction shaft furnace to achieve a higher efficiency. Ironmaking & Steelmaking: Processes, Products and Applications, 2024. https://doi.org/10.1177/03019233241306335 | |
[3] | Yao-zu Wang, Jian-liang Zhang, Qiang Cheng, et al. Interface interaction between SiO2 and magnetite under high temperature: particle migration and inhibition mechanism. Journal of Iron and Steel Research International, 2024, 31(3): 561. https://doi.org/10.1007/s42243-023-01078-1 | |
[4] | Xicai Liu, Jue Tang, Mansheng Chu, et al. Density functional theory study on the interaction of H2 and CO with Fe2O3 based on hydrogen-based shaft furnace process. International Journal of Hydrogen Energy, 2024, 70: 39. https://doi.org/10.1016/j.ijhydene.2024.05.175 | |
[5] | Zhuang Xiong, Yunfeng Zhang, Xiaodie Chen, et al. Impact of Vanadium–Titanium–Magnetite Mining Activities on Endophytic Bacterial Communities and Functions in the Root Systems of Local Plants. Genes, 2024, 15(5): 526. https://doi.org/10.3390/genes15050526 | |
[6] | Gongjin Cheng, Tong Han, Xuefei Zhang, et al. A novel method of enhancing valuable element recovery for ultra-high-titanium magnetite. Journal of Cleaner Production, 2023, 410: 137184. https://doi.org/10.1016/j.jclepro.2023.137184 | |
[7] | Hua-bin Gao, Jue Tang, Man-sheng Chu, et al. Effects of MgO/Al2O3 and CaO/SiO2 ratios on viscosity of high titanium-bearing blast furnace slag. Journal of Iron and Steel Research International, 2023, 30(3): 456. https://doi.org/10.1007/s42243-022-00876-3 | |
[8] | Yaxiong An, Jianwen Yu, Nan Hu, et al. An efficient and clean utilization technique for red mud based on fluidized bed carbon monoxide reduction. Advanced Powder Technology, 2022, 33(11): 103828. https://doi.org/10.1016/j.apt.2022.103828 | |
[9] | Zhihe Cao, Baozhong Ma, Jiashun Zhou, et al. Efficient recovery of iron and chromium from laterite residue by non-molten metallization reduction. Powder Technology, 2022, 407: 117618. https://doi.org/10.1016/j.powtec.2022.117618 | |
[10] | Yiru Yang, Qipeng Bao, Lei Guo, et al. Numerical simulation of flash reduction in a drop tube reactor with variable temperatures. International Journal of Minerals, Metallurgy and Materials, 2022, 29(2): 228. https://doi.org/10.1007/s12613-020-2210-1 | |
[11] | Wen Yu, Xiaojin Wen, Wei Liu, et al. Carbothermic Reduction and Nitridation Mechanism of Vanadium-Bearing Titanomagnetite Concentrate. Minerals, 2021, 11(7): 730. https://doi.org/10.3390/min11070730 | |
[12] | Jianwen Yu, Nan Hu, Hanxin Xiao, et al. Reduction behaviors of vanadium‑titanium magnetite with H2 via a fluidized bed. Powder Technology, 2021, 385: 83. https://doi.org/10.1016/j.powtec.2021.02.038 | |
[13] | Xiao-hui Li, Jue Kou, Ti-chang Sun, et al. Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 745. https://doi.org/10.1007/s12613-019-1903-9 | |
[14] | Cong FENG, Li-hua GAO, Jue TANG, et al. Effects of MgO/Al2O3 ratio on viscous behaviors and structures of MgO–Al2O3–TiO2–CaO–SiO2 slag systems with high TiO2 content and low CaO/SiO2 ratio. Transactions of Nonferrous Metals Society of China, 2020, 30(3): 800. https://doi.org/10.1016/S1003-6326(20)65255-4 | |
[15] | Xiao-ping Wang, Zhao-chun Li, Ti-chang Sun, et al. Factor analysis on the purity of magnesium titanate directly prepared from seashore titanomagnetite concentrate through direct reduction. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1462. https://doi.org/10.1007/s12613-020-1990-7 | |
[16] | Jianjiang Xin, Nan Wang, Min Chen, et al. Slag-metal Separation and Reduction Behaviors of Vanadium-bearing Titanomagnetite Metallized Pellets. ISIJ International, 2020, 60(5): 823. https://doi.org/10.2355/isijinternational.ISIJINT-2019-529 | |
[17] | Jue Tang, Man-sheng Chu, Feng Li, et al. Development and progress on hydrogen metallurgy. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 713. https://doi.org/10.1007/s12613-020-2021-4 | |
[18] | Shiju Zhang, Wenhui Ma, Ping Zhang, et al. Effect of MnO on the fusing temperature and the viscosity of high titanium slag. Metallurgical Research & Technology, 2019, 116(3): 317. https://doi.org/10.1051/metal/2018121 | |
[19] | Wei-dong Tang, Song-tao Yang, Xiang-xin Xue. Effect of Cr2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(8): 963. https://doi.org/10.1007/s12613-019-1813-x |