Ying Yan, Li-jia Chen, Guo-qiang Zhang, Dong Han, and Xiao-wu Li, Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp. 663-671. https://doi.org/10.1007/s12613-018-1613-8
Cite this article as:
Ying Yan, Li-jia Chen, Guo-qiang Zhang, Dong Han, and Xiao-wu Li, Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp. 663-671. https://doi.org/10.1007/s12613-018-1613-8
Research Article

Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation

+ Author Affiliations
  • Corresponding author:

    Xiao-wu Li    E-mail: xwli@mail.neu.edu.cn

  • Received: 16 November 2017Revised: 9 January 2018Accepted: 20 January 2018
  • To explore the influence of cyclic pre-deformation on the mechanical behavior of ultrafine-grained (UFG) materials with a high stacking fault energy (SFE), UFG Al processed by equal-channel angular pressing (ECAP) was selected as a target material and its tensile behavior at different pre-cyclic levels D (D=Ni/Nf, where Ni and Nf are the applied cycles and fatigue life at a constant stress amplitude of 50 MPa, respectively) along with the corresponding microstructures and deformation features were systematically studied. The cyclic pre-deformation treatment on the ECAPed UFG Al led to a decrease in flow stress, and a stress quasi-plateau stage was observed after yielding for all of the different-state UFG Al samples. The yield strength σYS, ultimate tensile strength σUTS, and uniform strain ε exhibited a strong dependence on D when D ≤ 20%; however, when D was in the range from 20% to 50%, no obvious change in mechanical properties was observed. The micro-mechanism for the effect of cyclic pre-deformation on the tensile properties of the ECAPed UFG Al was revealed and compared with that of ECAPed UFG Cu through the observations of deformation features and microstructures.
  • loading
  • [1]
    D.Y. Ye, Y.D. Xu, L. Xiao, and H.B. Cha, Effects of low-cycle fatigue on static mechanical properties, microstructures and fracture behavior of 304 stainless steel, Mater. Sci. Eng. A, 527(2010), No. 16-17, p. 4092.
    [2]
    Y. Yan, M. Lu, and X.W. Li, Effects of pre-fatigue deformation on the uniaxial tensile behavior of coarse-grained pure Al, Acta Metall. Sin., 49(2013), No. 6, p. 658.
    [3]
    U. Sánchez-Santana, C. Rubio-González, G. Mesmacque, and A. Amrouche, Effect of fatigue damage on the dynamic tensile behavior of 6061-T6 aluminum alloy and AISI 4140T steel, Int. J. Fatigue, 31(2009), No. 11-12, p. 1928.
    [4]
    U. Sánchez-Santana, C. Rubio-González, G. Mesmacque, A. Amrouche, and X. Decoopman, Effect of fatigue damage induced by cyclic plasticity on the dynamic tensile behavior of materials, Int. J. Fatigue, 30(2008), No. 10-11, p. 1708.
    [5]
    U. Sánchez-Santana, C. Rubio-González, G. Mesmacque, A. Amrouche, and X. Decoopman, Dynamic tensile behavior of materilas with previous fatigue damage, Mater. Sci. Eng. A, 497(2008), No. 1-2, p. 51.
    [6]
    K. Mariappan, V. Shankar, R. Sandhya, M.D. Mathew, and A.K. Bhaduri, Influence of prior fatigue damage on tensile properties of 316L(N) stainless steel and modified 9Cr-1Mo steel, Metall. Mater. Trans. A, 46(2015), No. 2, p. 989.
    [7]
    J. Galán López, P. Verleysen, I. De Baere, and J. Degrieck, Tensile properties of thin-sheet metals after cyclic damage, Procedia Eng., 10(2011), p. 1961.
    [8]
    C. Froustey and J.L. Lataillade, Influence of the microstructure of aluminium alloys on their residual impact properties after a fatigue loading program, Mater. Sci. Eng. A, 500(2009), No. 1-2, p. 155.
    [9]
    C.X. Huang, S.D. Wu, G.Y. Li, T. Liu, C.B. Jiang, and S.X. Li, Effect of cyclic deformation on room temperature tensile behaviors of ultrafine grained copper, Acta Metall. Sin., 40(2004), No. 11, p. 1165.
    [10]
    X. Molodova, G. Gottstein, M. Winning, and R.J. Hellmig, Thermal stability of ECAP processed pure copper, Mater. Sci. Eng. A, 460-461(2007), p. 204.
    [11]
    W.Q. Cao, C.F. Gu, E.V. Pereloma, and C.H.J. Davies, Stored energy, vacancies and thermal stability of ultra-fine grained copper, Mater. Sci. Eng. A, 492(2008), No. 1-2, p. 74.
    [12]
    A. Mishra, M. Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, and M.A. Meyers, High-strain-rate response of ultra-fine-grained copper, Acta Mater., 56(2008), No. 12, p. 2770.
    [13]
    P.L.M. Kanta, V.C. Srivastava, K. Venkateswarlu, S. Paswan, B. Mahato, G. Das, K. Sivaprasad, and K.G. Krishna, Corrosion behavior of ultrafine-grained AA2024 aluminum alloy produced by cryorolling, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1293.
    [14]
    X.W. Li, Y. Umakoshi, S.D. Wu, Z.G. Wang, I.V. Alexandrov, and R.Z. Valiev, Temperature effects on the fatigue behavior of ultrafine-grained copper produced by equal channel angular pressing, Phys. Status Solidi A, 201(2004), No. 15, p. 119.
    [15]
    Z.Y. Yu, Q.W. Jiang, and X.W. Li, Temperature-dependent deformation and damage behavior of ultrafine-grained copper under uniaxial compression, Phys. Status Solidi A, 205(2008), No. 10, p. 2417.
    [16]
    F.W. Long, Q.W. Jiang, L. Xiao, and X.W. Li, Compressive deformation behaviors of coarse- and ultrafine-grained pure titanium at different temperatures: A comparative study, Mater. Trans., 52(2011), No. 8, p. 1617.
    [17]
    Q.W. Jiang, Y. Liu, Y. Wang, Y.S. Chao, and X.W. Li, Microstructural instability of ultrafine-grained copper under annealing and high-temperature deforming, Acta Metall. Sin.,45(2009), No. 7, p. 873.
    [18]
    Cu single crystals oriented for critical double slip, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1631.
    [19]
    X.W. Li, Q.W. Jiang, Y. Liu, and Y. Wang, Effect of strain rate on the high-temperature compressive deformation behavior of ultrafine-grained copper, Inter. J. Mod. Phys. B, 23(2009), No. 6-7, p. 1758.
    [20]
    R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res., 17(2002), No. 1, p. 5.
    [21]
    H. Mughrabi, H.W. Höppel, M. Kautz, and R.Z. Valiev, Annealing treatment to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation, Z. Metallkd., 94(2003), No. 10, p. 1079.
    [22]
    N. Kamikawa, X.X. Huang, N. Tsuji, and N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed, Acta Mater., 57(2009), No. 14, p. 4198.
    [23]
    A. Vinogradov, Y. Kaneko, K. Kitagawa, S. Hashimoto, V. Stolyarov, and R. Valiev, Cyclic response of ultrafine-grained copper at constant plastic strain amplitude, Scripta Mater., 36(1997), No. 11, p. 1345.
    [24]
    X.X. Huang, N. Hansen, and N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals, Science, 312(2006), No. 5771, p. 249.
    [25]
    W.Z. Han, S.D. Wu, S.X. Li, and Y.D. Wang, Intermediate annealing of pure copper during cyclic equal channel angular pressing, Mater. Sci. Eng. A, 483-484(2008), p. 430.
    [26]
    R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee, The effect of annealing on tensile deformation behavior of nanostructured SPD titanium, Scripta Mater., 49(2003), No. 7, p. 669.
    [27]
    Q.W. Jiang and X.W. Li, Effect of pre-annealing treatment on the compressive deformation and damage behavior of ultrafine-grained copper, Mater. Sci. Eng. A, 546(2012), No. 1, p. 59.
    [28]
    S. Suresh, Fatigue of Materials, Cambridge University Press, 1998, p. 96.
    [29]
    Z.J. Zhang, P. Zhang, L.L. Li, and Z.F. Zhang, Fatigue cracking at twin boundaries: Effects of crystallographic orientation and stacking fault energy, Acta Mater., 60(2012), No. 6-7, p. 3113.
    [30]
    Y. Yan, M. Lu, W.W. Guo, and X.W. Li, Effect of pre-fatigue deformation on thickness-dependent tensile behavior of coarse-grained pure aluminum sheets, Mater. Sci. Eng. A, 600(2014), No. 4, p. 99.
    [31]
    X.W. Li, X.M. Wang, W.W. Guo, C.J. Qi, and Y. Yan, Effect of cyclic predeformation on the uniaxial tensile deformation behavior of
    [32]
    J. Xu, J.W. Li, L. Shi, D.B. Shan, and B. Guo, Effects of temperature, strain rate and specimen size on the deformation behaviors at micro/meso-scale in ultrafine-grained pure Al, Mater. Charact., 109(2015), No. 11, p. 181.
    [33]
    J. Xu, X.C. Zhu, D.B. Shan, B. Guo, and T.G. Langdon, Effect of grain size and specimen dimensions on micro-forming of high purity aluminum, Mater. Sci. Eng. A, 646(2015), No. 14, p. 207.
    [34]
    D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev, Deformation behavior and plastic instabilities of ultrafine-grained titanium, Appl. Phys. Lett., 79(2001), No. 5, p. 611.
    [35]
    R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet, Deformation behavior of ultra-fine-grained copper, Acta Metall. Mater., 42(1994), No. 7, p. 2467.
    [36]
    R.Z. Valiev, Approach to nanostructured solids through the studies of submicron grained polycrystals, Nanostruct. Mater., 6(1995), No. 1-4, p. 73.
    [37]
    R.Z. Valiev, Structure and mechanical properties of ultrafine-grained metals, Mater. Sci. Eng. A, 234-236(1997), p. 59.
    [38]
    A. Vinogradov and S. Hashimoto, Multiscale phenomena in fatigue of ultra-fine grain materials—an overview, Mater. Trans., 42(2001), No. 1, p. 74.
    [39]
    S. Malekjani, P.D. Hodgson, N.E. Stanford, and T.B. Hilditch, The role of shear banding on the fatigue ductility of ultrafine-grained aluminium, Scripta Mater., 68(2013), No. 5, p. 269.
    [40]
    J.W. Li, J. Xu, B. Guo, D.B. Shan, and T.G. Langdon, Shear fracture mechanism in micro-tension of an ultrafine-grained pure copper using synchrotron radiation X-ray tomography, Scripta Mater., 132(2017), No. 15, p. 25.
    [41]
    I. Sabirov, M.R. Barnett, Y. Estrin, and P.D. Hodgson, The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy, Scripta Mater., 61(2009), No. 2, p. 181.
    [42]
    L. Kunz, P. Lukáš, and M. Svoboda, Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper, Mater. Sci. Eng. A, 424(2006), No. 1-2, p. 97.
    [43]
    W.Q. Cao, G.F. Dirras, M. Benyoucef, and B. Bacroix, Room temperature deformation mechanisms in ultrafine-grained materials processed by hot isostatic pressing, Mater. Sci. Eng. A, 462(2007), No. 1-2, p. 100.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(437) PDF Downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return