Cite this article as: |
Soheil Amaniand Ghader Faraji, Recrystallization and mechanical properties of WE43 magnesium alloy processed via cyclic expansion extrusion, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp. 672-681. https://doi.org/10.1007/s12613-018-1614-7 |
Ghader Faraji E-mail: ghfaraji@ut.ac.ir
[1] |
M. Ma, K. Zhang, X.G. Li, Y.J. Li, G.L. Shi, and J.W. Yuan, Influence of solution and aging on the microstructures and mechanical properties of complex deformed WE93 alloy, Mater. Des., 51(2013), p. 73.
|
[2] |
W.Z. Chen, X. Wang, L.X. Hu, and E. Wang, Fabrication of ZK60 magnesium alloy thin sheets with improved ductility by cold rolling and annealing treatment, Mater. Des., 40(2012), p. 319.
|
[3] |
M. Mabuchi, T. Asahina, H. Iwasaki, and K. Higashi, Experimental investigation of superplastic behaviour in magnesium alloys, Mater. Sci. Technol., 13(1997), No. 10, p. 825.
|
[4] |
W. Püschl, Models for dislocation cross-slip in close-packed crystal structures: a critical review, Prog. Mater. Sci., 47(2002), No. 4, p. 415.
|
[5] |
B. Smola, L. Joska, V. Březina, I. Stulíková, and F. Hnilica, Microstructure, corrosion resistance and cytocompatibility of Mg–5Y–4rare earth–0.5 Zr (WE54) alloy, Mater. Sci. Eng. C, 32(2012), No. 4, p. 659.
|
[6] |
H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. WaizyEmail, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study, Biomed. Eng. Online, 12(2013), No. 1, p. 62.
|
[7] |
B. O’Brien and W. Carroll, The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review, Acta Biomater., 5(2009), No. 4, p. 945.
|
[8] |
V. Neubert, I. Stulíková, B. Smola, B.L. Mordike, M. Vlach, A. Bakkar, and J. Pelcová, Thermal stability and corrosion behaviour of Mg–Y–Nd and Mg–Tb–Nd alloys, Mater. Sci. Eng. A, 462(2007), No. 1-2, p. 329.
|
[9] |
C. Xu, K.N. Xia, and T.G. Langdon, Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure, Mater. Sci. Eng. A, 527(2009), No. 1-2, p. 205.
|
[10] |
A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci., 53(2008), No. 6, p. 893.
|
[11] |
G. Faraji, M. Mashhadi, and H.S. Kim, Microstructure inhomogeneity in ultra-fine grained bulk AZ91 produced by accumulative back extrusion (ABE), Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4312.
|
[12] |
G. Faraji, M.M. Mashhadi, and H.S. Kim, Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Mater. Lett., 65(2011), No. 19-20, p. 3009.
|
[13] |
J. Richert and M. Richert, A new method for unlimited deformation of metals and alloys, Aluminium, 62(1986), No. 8, p. 604.
|
[14] |
N. Pardis, B. Talebanpour, R. Ebrahimi, and S. Zomorodian, Cyclic expansion-extrusion (CEE): a modified counterpart of cyclic extrusion-compression (CEC), Mater. Sci. Eng. A, 528(2011), No. 25-26, p.7537.
|
[15] |
M. Ensafi, G. Faraji, and H. Abdolvand, Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals, Mater. Lett., 197(2017), p. 12.
|
[16] |
G. Faraji, M.M. Mashhadi, K. Abrinia, and H.S. Kim, Deformation behavior in the tubular channel angular pressing (TCAP) as a noble SPD method for cylindrical tubes, Appl. Phys. A, 107(2012), No. 4, p. 819.
|
[17] |
G. Faraji, P. Yavari, S. Aghdamifar, and M.M. Mashhadi, Mechanical and microstructural properties of ultra-fine grained AZ91 magnesium alloy tubes processed via multi pass tubular channel angular pressing (TCAP), J. Mater. Sci. Technol., 30(2014), No. 2, p. 134.
|
[18] |
X. Zhang, G.Y. Yuan, and Z.Z. Wang, Mechanical properties and biocorrosion resistance of Mg–Nd–Zn–Zr alloy improved by cyclic extrusion and compression, Mater. Lett., 74(2012), p. 128.
|
[19] |
N. Pardis, C. Chen, M. Shahbaz, R. Ebrahimi, and L.S. Toth, Development of new routes of severe plastic deformation through cyclic expansion-extrusion process, Mater. Sci. Eng. A, 613(2014), p. 357.
|
[20] |
H. Sheikh and R. Ebrahimi, Investigation on texture evolution during cyclic expansion-extrusion (CEE) technique using crystal plasticity finite element modeling, J. Mater. Sci., 51(2016), No. 22, p. 10178.
|
[21] |
N. Pardis, C. Chen, R. Ebrahimi, L.S. Toth, C.F. Gu, B. Beausir, and L. Kommel, Microstructure, texture and mechanical properties of cyclic expansion-extrusion deformed pure copper, Mater. Sci. Eng. A, 628(2015), p. 423.
|
[22] |
S. Amani, G. Faraji, H.K. Mehrabadi, K. Abrinia, and H. Ghanbari, A combined method for producing high strength and ductility magnesium microtubes for biodegradable vascular stents application, J. Alloys Compd., 723(2017), p. 467.
|
[23] |
Q.D. Wang, Y.J. Chen, M.P. Liu, J.B. Lin, and H.J. Roven, Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression, Mater. Sci. Eng. A, 527(2010), No. 9, p. 2265.
|
[24] |
S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, and Y. Kojima, Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation, Mater. Sci. Eng. A, 527(2009), No. 1-2, p. 52.
|
[25] |
F.A. Slooff, J.S. Dzwonczyk, J. Zhou, J. Duszczyk, and L. Katgerman, Hot workability analysis of extruded AZ magnesium alloys with processing maps, Mater. Sci. Eng. A, 527(2010), No. 3, p. 735.
|
[26] |
S.A. Farzadfar, É. Martin, M. Sanjari, E. Essadiqi, and S. Yue, Texture weakening and static recrystallization in rolled Mg–2.9 Y and Mg–2.9 Zn solid solution alloys, J. Mater. Sci., 47(2012), No. 14, p. 5488.
|
[27] |
I.H. Jung, M. Sanjari, J. Kim, and S. Yue, Role of RE in the deformation and recrystallization of Mg alloy and a new alloy design concept for Mg–RE alloys, Scripta Mater., 102(2015), p. 1.
|
[28] |
D. Griffiths, Explaining texture weakening and improved formability in magnesium rare earth alloys, Mater. Sci. Technol., 31(2015), No. 1, p. 10.
|
[29] |
N. Stanford, The effect of rare earth elements on the behaviour of magnesium-based alloys: Part 2—recrystallisation and texture development, Mater. Sci. Eng. A, 565(2013), p. 469.
|
[30] |
W. Wlake, E. Hadasik, J. Przondziono, D. Kuc, I. Bednarczyk, and G. Niewiński, Plasticity and corrosion resistance of magnesium alloy WE43, Arch. Mater. Sci. Eng., 51(2011), No. 1, p. 16.
|
[31] |
H. Beladi and M. Barnett, Influence of aging pre-treatment on the compressive deformation of WE54 alloy, Mater. Sci. Eng. A, 452-453(2007), p. 306.
|
[32] |
S.A. Farzadfar, M. Sanjari, I.H. Jung, E. Essadiqi, and S. Yue, Role of yttrium in the microstructure and texture evolution of Mg, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6742.
|
[33] |
S.A. Farzadfar, É. Martin, M. Sanjari, E. Essadiqi, M.A. Wells, and S. Yue, On the deformation, recrystallization and texture of hot-rolled Mg–2.9Y and Mg–2.9Zn solid solution alloys-A comparative study, Mater. Sci. Eng. A, 534(2012), Suppl. C, p. 209.
|
[34] |
W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu, and H. Zhou, Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting, Mater. Sci. Eng. A, 540(2012), p. 115.
|
[35] |
S.K. Panigrahi, W. Yuan, R.S. Mishra, R. DeLorme, B. Davis, R.A. Howell, and K. Cho, A study on the combined effect of forging and aging in Mg–Y–RE alloy, Mater. Sci. Eng. A, 530(2011), p. 28.
|
[36] |
J. She, F.S. Pan, W. Guo, A.T. Tang, Z.Y. Gao, S.Q. Luo, K. Song, Z.W. Yu, and M. Rashad, Effect of high Mn content on development of ultra-fine grain extruded magnesium alloy, Mater. Des., 90(2016), p. 7.
|
[37] |
S. Amani, G. Faraji, and K. Abrinia, Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE), J. Manuf. Processes, 28(2017), Part 1, p. 197.
|
[38] |
F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, and H.K. Kim, Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing, Mater. Des., 43(2013), p. 31.
|
[39] |
Y. Estrin, L.S. Toth, A. Molinari, and Y. Bréchet, A dislocation-based model for all hardening stages in large strain deformation, Acta Mater., 46(1998), No. 15, p. 5509.
|
[40] |
Q. Chen, D.Y. Shu, C.K. Hu, Z.D. Zhao, and B.G. Yuan, Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure, Mater. Sci. Eng. A, 541(2012), p. 98.
|
[41] |
P. Minárik, R. Král, J. Čížek, and F. Chmelík, Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP, Acta Mater., 107(2016), p. 83.
|
[42] |
H. Huang, Z.B. Tang, Y. Tian, G.Z. Jia, J.L. Niu, H. Zhang, J. Pei, and G.Y. Yuan, Effects of cyclic extrusion and compression parameters on microstructure and mechanical properties of Mg–1.50 Zn–0.25 Gd alloy, Mater. Des., 86(2015), p. 788.
|
[43] |
E. Orawan, The symposium on internal stresses in metals and alloys, Institute of Metals, London, 1948, p. 451.
|
[44] |
M.F. Ashby, The theory of the critical shear stress and work hardening of dispersion-hardened crystals, Philos. Mag.: J. Theor. Exp. Appl. Phys., 14(1966), No. 132, p. 1157.
|