Takehito Hiraki, Yuichi Maruyama, Yuta Suzuki, Satoshi Itoh,  and Tetsuya Nagasaka, Up-grading of natural ilmenite ore by combining oxidation and acid leaching, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 729-736. https://doi.org/10.1007/s12613-018-1620-9
Cite this article as:
Takehito Hiraki, Yuichi Maruyama, Yuta Suzuki, Satoshi Itoh,  and Tetsuya Nagasaka, Up-grading of natural ilmenite ore by combining oxidation and acid leaching, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 729-736. https://doi.org/10.1007/s12613-018-1620-9
Research Article

Up-grading of natural ilmenite ore by combining oxidation and acid leaching

+ Author Affiliations
  • Corresponding author:

    Takehito Hiraki    E-mail: hiraki@material.tohoku.ac.jp

  • Received: 10 December 2017Revised: 1 March 2018Accepted: 2 March 2018
  • Rutile (TiO2) is heavily used in pigments and colorants, and the most abundant source of rutile is ilmenite. Upon oxidation of ilmenite, rutile can be formed with modest energy consumption; furthermore, after leaching, only a few byproducts are formed. Unfortunately, one drawback is the necessarily long oxidative process of typically used methods. In this study, we show that a fluidized bed reactor can be used to oxidize ilmenite ore to rapidly form rutile and pseudobrookite (Fe2TiO5) phases. Ilmenite was oxidized with 5vol% O2 in Ar at temperatures of 1173 K or 1223 K and subsequently leached using a diluted H2SO4 solution to dissolve the pseudobrookite phase. The effects of acid concentration, temperature, and cooling rate after oxidation were investigated. We show that the ilmenite was rapidly oxidized to form rutile and pseudobrookite phases at 1173 and 1223 K in a 5vol% O2/95vol% Ar environment within 40 min. The final maximum rutile yield was 84.2mol% after leaching in (1 + 1) H2SO4 solution at 393 K for 12 h.
  • loading
  • [1]
    U.S. Geological Survey, Mineral Commodity Summaries 2017, U.S. Geological Survey, Reston, Virginia, 2017.
    [2]
    M. Pourabdoli, S. Raygan, H. Abdizadeh, and K. Hanaei, Production of high titania slag by electro-slag crucible melting (ESCM) process, Int. J. Miner. Process., 78(2006), No. 3, p. 175.
    [3]
    K.K. Sahu, T.C. Alex, D. Mishra, and A. Agrawal, An overview on the production of pigment grade titania from titania-rich slag, Waste Manage. Res., 24(2006), No. 1, p. 74.
    [4]
    D. Filippou and G. Hudon, Iron removal and recovery in the titanium dioxide feedstock and pigment industries, JOM, 61(2009), No. 10, p. 36.
    [5]
    S. Samal, P.S. Mukherjee, and A.K. Ray, Comparative study on energy consumption and yield by various thermal plasma routes for production of titania slag, Plasma Chem. Plasma Process., 30(2010), No. 3, p. 413.
    [6]
    M.J. Gázquez, J.P. Bolívar, R. Garcia-Tenorio, and F. Vaca, A review of the production cycle of titanium dioxide pigment, Mater. Sci. Appl., 5(2014), No. 7, p. 441.
    [7]
    S. Middlemas, Z.Z. Fang, and P. Fan, Life cycle assessment comparison of emerging and traditional titanium dioxide manufacturing processes, J. Cleaner Prod., 89(2015). p. 137.
    [8]
    J.H. Zietsman and P.C. Pistorius, Process mechanisms in ilmenite smelting, J. South Afr. Inst. Min. Metall., 105(2005), No. 4, p. 229.
    [9]
    C. Murty, R. Upadhyay, and S. Asokan, Electro smelting of ilmenite for production of TiO2 slag-potential of India as a global player, [in] Proceedings of INFACON XI, New Delhi, 2007, p. 18.
    [10]
    R.G. Becher, R.G. Canning, B.A. Goodheart, and S. Uusna, A new process for upgrading ilmenitic mineral sands, Proc. Aust. Inst. Miner. Metall., 21(1965), p. 21.
    [11]
    Benilite Corp. of America, Beneficiation of titaniferous ores, U.S. Patent, Appl. 3825419, 1974.
    [12]
    D.B. Rao and M. Rigaud, Kinetics of the oxidation of ilmenite, Oxid. Met., 9(1975), No. 1, p. 99.
    [13]
    S.K. Gupta, V. Rajakumar, and P. Grieveson, Phase transformations during heating of ilmenite concentrates, Metall. Trans. B, 22(1991), No. 5, p. 711.
    [14]
    G.Q. Zhang and O. Ostrovski, Effect of peroxidation and sintering on properties of ilmenite concentrates, Int. J. Miner. Process., 64(2002), No. 4, p. 201.
    [15]
    S. Itoh, S. Sato, J. Ono, H. Okada, and T. Nagasaka, Feasibility study of the new rutile extraction process from natural ilmenite ore based on the oxidation reaction, Metall. Mater. Trans. B, 37(2006), No. 6, p. 979.
    [16]
    R. Vásquez and A. Molina, Effects of thermal peroxidation on reductive leaching of ilmenite, Miner. Eng., 39(2012), p. 99.
    [17]
    W. Xiao, X.G. Lu, X.L. Zuo, X.M. Wei, and W.Z. Ding, Phase transitions, micro-morphology and its oxidation mechanism in oxidation of ilmenite (FeTiO3) powder, Trans. Nonferrous Met. Soc. China, 23(2013), No. 8, p. 2439.
    [18]
    J.B. Zhang, G.Y. Zhang, Q.S. Zhu, C. Lei, Z.H. Xie, and H.Z. Li, Morphological changes and reduction mechanism for the weak reduction of the preoxidized Panzhihua ilmenite, Metall. Mater. Trans. B, 45(2014), No. 3, p. 914.
    [19]
    Y. Chen, Low-temperature oxidation of ilmenite (FeTiO3) induced by high energy ball milling at room temperature, J. Alloys Compd., 257(1997), No. 1-2, p. 156.
    [20]
    O. Levenspiel, Chemical Reaction Engineering, 2nd Ed., Wiley, New York, 1972, p. 361.
    [21]
    M.D. Pritzker, Shrinking-core model for systems with facile heterogeneous and homogeneous reactions, Chem. Eng. Sci., 51(1996), No. 14, p. 3631.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(691) PDF Downloads(30) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return