Cite this article as: |
Yong Li, Min-dong Chen, Jian-kuan Li, Long-fei Song, Xin Zhang, and Zhi-yong Liu, Flow-accelerated corrosion behavior of 13Cr stainless steel in a wet gas environment containing CO2, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 779-787. https://doi.org/10.1007/s12613-018-1626-3 |
Zhi-yong Liu E-mail: liuzhiyong7804@126.com
[1] |
X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: share corrosion data, Nature, 527(2015), No. 7579, p. 441.
|
[2] |
S. Nešić, Key issues related to modelling of internal corrosion of oil and gas pipelines—a review, Corros. Sci., 49(2007), No. 12, p. 4308.
|
[3] |
J.W. Yang, H2S/CO2 corrosion of X60 pipeline steel in wet gas and solution, Acta Metall. Sin., 44(2008), No. 11, p. 1366.
|
[4] |
S.S. Rajahram, T.J. Harvey, and R.J.K. Wood, Erosion-corrosion resistance of engineering materials in various test conditions, Wear, 267(2009), No. 1-4, p. 244.
|
[5] |
K. Najmi, B.S. McLaury, S.A. Shirazi, and S. Cremaschi, Experimental study of low concentration sand transport in wet gas flow regime in horizontal pipes, J. Nat. Gas Sci. Eng., 24(2015), p. 80.
|
[6] |
P.B. Machado, J.G.M. Monteiro, J.L. Medeiros, H.D. Epsom, and O.Q.F. Araujo, Supersonic separation in onshore natural gas dew point plant, J. Nat. Gas Sci. Eng., 6(2012), p. 43.
|
[7] |
L.T. Wang, Y.Y. Xing, Z.Y. Liu, D.W. Zhang, C.W. Du, and X.G. Li, Erosion-corrosion behavior of 2205 duplex stainless steel in wet gas environments, J. Nat. Gas Sci. Eng., 35(2016), p. 928.
|
[8] |
X.M. Hu and A. Neville, CO2 erosion-corrosion of pipeline steel (API X65) in oil and gas conditions—a systematic approach, Wear, 267(2009), No. 11, p. 2027.
|
[9] |
A. Kahyarian, M. Singer, and S. Nesic, Modeling of uniform CO2 corrosion of mild steel in gas transportation systems: a review, J. Nat. Gas Sci. Eng., 29(2016), p. 530.
|
[10] |
M. Bagheri, A. Alamdari, and M. Davoudi, Quantitative risk assessment of sour gas transmission pipelines using CFD, J. Nat. Gas Sci. Eng., 31(2016), p. 108.
|
[11] |
L. Giourntas, T. Hodgkiess, and A.M. Galloway, Comparative study of erosion-corrosion performance on a range of stainless steels, Wear, 332-333(2015), p. 1051.
|
[12] |
D.A. López, T. Pérez, and S.N. Simison, The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal, Mater. Des., 24(2003), No. 8, p. 561.
|
[13] |
G.A. Zhang and Y.F. Cheng, Electrochemical corrosion of X65 pipe steel in oil/water emulsion, Corros. Sci., 51(2009), No. 4, p. 901.
|
[14] |
M.A. Islam and Z.N. Farhat, The synergistic effect between erosion and corrosion of API pipeline in CO2 and saline medium, Tribol. Int., 68(2013), p. 26.
|
[15] |
R.J.K. Wood, J.C. Walker, T.J. Harvey, S. Wang, and S.S. Rajahram, Influence of microstructure on the erosion and erosion-corrosion characteristics of 316 stainless steel, Wear, 306(2013), No. 1-2, p. 254.
|
[16] |
E. Mahdi, A. Rauf, and E.O. Eltai, Effect of temperature and erosion on pitting corrosion of X100 steel in aqueous silica slurries containing bicarbonate and chloride content, Corros. Sci., 83(2014), p. 48.
|
[17] |
Y.L. Zhao, F. Zhou, J. Yao, S.G. Dong, and N. Li, Erosion-corrosion behavior and corrosion resistance of AISI 316 stainless steel in flow jet impingement, Wear, 328-329(2015), p. 464.
|
[18] |
G.A. Zhang, L.Y. Xu, and Y.F. Cheng, Investigation of erosion-corrosion of 3003 aluminum alloy in ethylene glycol-water solution by impingement jet system, Corros. Sci., 51(2009), No. 2, p. 283.
|
[19] |
W.M. Zhao, C. Wang, T.M. Zhang, M. Yang, B. Han, and A. Neville, Effects of laser surface melting on erosion-corrosion of X65 steel in liquid-solid jet impingement conditions, Wear, 362-363(2016), p. 39.
|
[20] |
G.A. Zhang, L. Zeng, H.L. Huang, and X.P. Guo, A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simulation, Corros. Sci., 77(2013), p. 334.
|
[21] |
S. Papavinasam, R. Revie, M. Attard, A. Demoz, and K. Michaelian, Comparison of laboratory methodologies to evaluate corrosion inhibitors for oil and gas pipelines, Corrosion, 59(2003), No. 10, p. 897.
|
[22] |
X. Jiang, Y.G. Zheng, and W. Ke, Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution, Corros. Sci., 47(2005), No. 11, p. 2636.
|
[23] |
A.H. Hosseinloo, F.F. Yap, and L.Y. Lim, Design and analysis of shock and random vibration isolation system for a discrete model of submerged jet impingement cooling system, J. Vib. Control, 21(2015), No. 3, p. 468.
|
[24] |
H. Luo, C.F. Dong, X.G. Li, and K. Xiao, The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride, Electrochim. Acta, 64(2012), p. 211.
|
[25] |
X.F. Wang, Z.J. Dong, Y.J. Liang, Z.H. Zhang, and C.F. Chen, Development of economic steels with low Cr content for anti-corrosion oil tube, Corros. Sci. Protect. Technol., 18(2006), No. 6, p. 436.
|
[26] |
H. Takabe and M. Ueda, The relationship between CO2 corrosion resistance and corrosion products structure on carbon and low Cr bearing steels, Corros. Eng., 56(2007), No. 11, p. 514.
|
[27] |
G.A. Zhang and Y.F. Cheng, Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO2-saturated oilfield formation water, Corros. Sci. 52(2010), No. 8, p. 2716.
|
[28] |
K. Stewartson, Mechanics of Fluids, Nature, 272(1978), No. 5648, p. 109.
|
[29] |
B.S. Massey and J. Ward-Smith, Mechanics of Fluids, CRC Press, Boca Raton, 1998, p. 36.
|
[30] |
B.R. Munson, D.F. Young, and T.H. Okiishi, Fundamentals of Fluid Mechanics, 3rd Ed. Wiley, New York, 1990, p. 16.
|
[31] |
M. Metikoš-Huković, I. Škugor, Z. Grubač, and R. Babić, Complexities of corrosion behaviour of copper-nickel alloys under liquid impingement conditions in saline water, Electrochim. Acta, 55(2010), No. 9, p. 3123.
|