Cite this article as: |
Bao-biao Yu, Hong Yan, Qing-jie Wu, Zhi Hu, and Fan-hui Chen, Microstructure and corrosion behavior of Al3Ti/ADC12 composite modified with Sr, Int. J. Miner. Metall. Mater., 25(2018), No. 7, pp. 840-848. https://doi.org/10.1007/s12613-018-1633-4 |
Hong Yan E-mail: hyan@ncu.edu.cn
[1] |
W. Szymański, Properties of “in situ” 7475 alloy matrix composites reinforced Al3Ti intermetalic compound extruded in semi–solid state, Arch. Metall. Mater., 61(2016), No. 1, p. 433.
|
[2] |
X.P. Wu, J.G. Shi, H. Wu, M.H. Chen, N. Liu, and Q.W. Li, Preparation and mechanical properties of SiC particulate-reinforced ADC12 aluminum matrix composite by vacuum stir casting, J. Mater. Eng, 4(2014), No. 1, p. 6.
|
[3] |
L. Jiang, Y.J. Shi, J. Ding, C. Bing, and G.F. Fu, Al2O3/ADC12 composites fabricated by decomposition-synthesis method and their mechanical behaviors, Adv. Mater. Res., 391-392(2012), p. 364.
|
[4] |
R. Jovid, T. Giulio, and B. Franco, Influence of melt superheat, Sr modifier, and Al–5Ti–1B grain refiner on microstructural evolution of secondary Al–Si–Cu alloys, Metall. Mater. Trans. A, 47(2016), No. 11, p. 5510.
|
[5] |
J. Barrirero, M. Engstler, N. Ghafoor, N. de Jonge, M. Odén, and F. Mücklich, Comparison of segregations formed in unmodified and Sr-modified Al–Si alloys studied by atom probe tomography and transmission electron microscopy, J. Alloys Compd., 611(2014), p. 410.
|
[6] |
A.M. Samuel, H.W. Doty, S. Valtierra, and F.H. Samuel, Effect of grain refining and Sr–modification interactions on the impact toughness of Al–Si–Mg cast alloys, Mater. Des., 56(2014), p. 264.
|
[7] |
G.L. Song and Z.Q. Xu, Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution, Corros. Sci., 54(2012), p. 97.
|
[8] |
H.M. Jia, X.H. Feng, and Y.S. Yang, Microstructure and corrosion resistance of directionally solidified Mg–2 wt.% Zn alloy, Corros. Sci., 120(2017), p. 75.
|
[9] |
S. Li, H.G. Dong, L. Shi, P. Li, and F. Ye, Corrosion behavior and mechanical properties of Al–Zn–Mg aluminum alloy weld, Corros. Sci., 123(2017), p. 243.
|
[10] |
Z. Hu, X.M. Ruan, and H. Yan, Effects of neodymium addition on microstructure and mechanical properties of near-eutectic Al–12Si alloys, Trans. Nonferrous Met. Soc., 25(2015), No. 12, p. 3877.
|
[11] |
H.X. Qiu, H. Yan, and Z. Hu, Modification of near-eutectic Al–Si alloys with rare earth element samarium, J. Mater. Res., 29(2014), No. 11, p. 1270.
|
[12] |
A.M. Cardinale, D. Macciò, G. Luciano, E. Canepa, and P. Traverso, Thermal and corrosion behavior of as cast Al–Si alloys with rare earth elements, J. Alloys Compd., 695(2017), p. 2180.
|
[13] |
G. Chen, X.G. Song, N. Hu, H. Wang, and Y.F. Tian, Effect of initial Ti powders size on the microstructures and mechanical properties of Al3Ti/2024 Al composites prepared by ultrasonic assisted in-situ casting, J. Alloys Compd., 694(2016), p. 539.
|
[14] |
T.M. Wang, Y.F. Zhao, Z.N. Chen, Y.P. Zheng, and H.J. Kang, The bimodal effect of La on the microstructures and mechanical properties of in-situ A356–TiB2 composites, Mater. Des., 85(2015), p. 724.
|
[15] |
M. Zarko, The degree of openness of the macedonian economy and the growth of the gross domestic product, Econ. Dev., 17(2015), No. 1-2, p. 277.
|
[16] |
W.R. Osório, L.R. Garcia, P.R. Goulart, and A. Garcia, Effects of eutectic modification and T4 heat treatment on mechanical properties and corrosion resistance of an Al–9wt%Si casting alloy, Mater. Chem. Phys., 106(2007), No. 2-3, p. 343.
|
[17] |
W.R. Osório, N. Cheung, J.E. Spinelli, P.R. Goulart, and A. Garcia, The effects of a eutectic modifier on microstructure and surface corrosion behavior of Al–Si hypoeutectic alloys, J. Solid State Electrochem., 11(2007), No. 10, p. 1421.
|
[18] |
R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, M.C. Merion, and A. Rivas, Microstructure and corrosion behaviour of A356 aluminium alloy modified with Nd, Mater. Corros., 66(2015), No. 6, p. 535.
|
[19] |
Z. Hu, X. Li, Q. Hua, H. Yan, H.X. Qiu, X.M. Ruan, and Z.H. Li, Effects of Sm on microstructure and corrosion resistance of hot-extruded AZ61 magnesium alloys, J. Mater. Res., 30(2015), No. 23, p. 3671.
|
[20] |
P. Srirangam, S. Chattopadhyay, A. Bhattacharya, S. Nag, J. Kaduk, S. Shankar, R. Banerjee, and T. Shibata, Probing the local atomic structure of Sr-modified Al–Si alloys, Acta Mater., 65(2014), p. 185.
|
[21] |
V.V. Shanbhag, N.N. Yalamoori, S. Karthikeyan, R. Ramanujam, and K. Venkatesan, Fabrication, surface mrphology and crrosion ivestigation of Al 7075–Al2O3, matrix composite in sea water and idustrial environment, Procedia Eng., 97(2014), p. 607.
|
[22] |
J.Y. Park, I.H. Kim, H.G. Kim, Y.I. Jung, D.J. Park, J.H. Park, and Y.H. Koo, Experimental investigation on the corrosion behavior of Al3Ti-based intermetallic compounds in nuclear reactor normal operation conditions, J. Nucl. Mater., 467(2015), p. 607.
|
[23] |
E. Huseyin, S. Ömer, A. Zafer, O.K. Özdemir, and K.K. Ramazan, Corrosion behavior of in-situ AlB2/Al–Cu metal matrix composite, Acta Phys. Pol. A, 129(2016), No. 4, p. 661.
|
[24] |
Z.D. Li, C. Li, Z.M. Gao, Y.C. Liu, X.F. Liu, Q.Y. Guo, L.M. Yu, and H.J. Li, Corrosion behavior of Al–Mg2Si alloys with/without addition of Al–P master alloy, Mater. Charact., 110(2015), No.3, p. 170.
|
[25] |
Y.Z. Lin and D.J Yang, Corrosion and Corrosion Control Principles, 2nd Ed., China Petrochemical Press, Beijing, 2014, p. 93.
|