Cite this article as: |
Kai Jia, Qi-ming Feng, Guo-fan Zhang, Qing Shi, Yuan-jia Luo, and Chang-bin Li, Improved hemimorphite flotation using xanthate as a collector with S(Ⅱ) and Pb(Ⅱ) activation, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp. 849-860. https://doi.org/10.1007/s12613-018-1634-3 |
Guo-fan Zhang E-mail: zhangguofancsu01@126.com
[1] |
N. Sorour, W. Zhang, G. Gabra, E. Ghali, and G. Houlachi, Electrochemical studies of ionic liquid additives during the zinc electrowinning process, Hydrometallurgy, 157(2015), p. 261.
|
[2] |
H.B. Zhao, X.W. Gan, J. Wang, L. Tao, W.Q. Qin, and G.Z. Qiu, Stepwise bioleaching of Cu-Zn mixed ores with comprehensive utilization of silver-bearing solid waste through a new technique process, Hydrometallurgy, 171(2017), p. 374.
|
[3] |
Q.M. Feng and G.F. Zhang, Original pulp flotation technology of the oxidized ore of zinc and lead(in Chinese), China Basic Sci.,(2011), No. 1, p. 25.
|
[4] |
T.L. Rao, Basical characteristics of lead-zinc mineral resources and the vista on geological prospecteing of super large scale lead-zinc deposits in Yunnan, China Min. Mag., 17(2008), No. 3, p. 107.
|
[5] |
H.M. Shao, X.Y. Shen, Y. Sun, Y. Liu, and Y.C. Zhai, Reaction condition optimization and kinetic investigation of roasting zinc oxide ore using (NH4)2SO4, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1133.
|
[6] |
G. Kim, K. Park, J. Choi, A. Gomez-Flores, Y. Han, S.Q. Choi, and H. Kim, Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow, Int. J. Miner. Process., 143(2015), p. 98.
|
[7] |
S.H. Hosseini and E. Forssberg, Physicochemical studies of smithsonite flotation using mixed anionic/cationic collector, Miner. Eng., 20(2007), No. 6, p. 621.
|
[8] |
Y. Sun, X.Y. Shen, and Y.C. Zhai, Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method, Int. J. Miner. Metall. Mater., 22(2015), No. 5, p. 467.
|
[9] |
J. Wang, Q.W. Zhang, and F. Saito, Improvement in the floatability of CuO by dry grinding with sulphur, Colloids Surf. A, 302(2007), No. 1–3, p. 494.
|
[10] |
M. Irannajad, M. Ejtemaei, and M. Gharabaghi, The effect of reagents on selective flotation of smithsonite–calcite–quartz, Miner. Eng., 22(2009), No. 9-10, p. 766.
|
[11] |
M. Ejtemaei, M. Irannajad, and M. Gharabaghi, Influence of important factors on flotation of zinc oxide mineral using cationic, anionic and mixed (cationic/anionic) collectors, Miner. Eng., 24(2011), No. 13, p. 1402.
|
[12] |
A.L. Chen, M.C. Li, Z. Qian, Y.T. Ma, J.Y. Che, and Y.L. Ma, Hemimorphite ores: A review of processing technologies for zinc extraction, JOM, 68(2016), No. 10, p. 2688.
|
[13] |
H. Bustamante and H.L. Shergold, Surface chemistry and flotation of zinc oxide minerals: Ⅱ.--Flotation with chelating reagents, Trans. Inst. Min. Metall. Sect. C, 92(1983), p. C208.
|
[14] |
A. Marabini, M. Ciriachi, P. Plescia, and M. Barbaro, Chelating reagents for flotation, Miner. Eng., 20(2007), No. 10, p. 1014.
|
[15] |
R. Herrera-Urbina, F.J. Sotillo, and D.W. Fuerstenau, Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena, Int. J. Miner. Process., 55(1999), No. 3, p. 157.
|
[16] |
Q.C. Feng, S.M. Wen, J.S. Deng, and W.J. Zhao, Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride, Appl. Surf. Sci., 425(2017), p. 8.
|
[17] |
S. Castro, J. Goldfarb, and J. Laskowski, Sulphidizing reactions in the flotation of oxidized copper minerals, I. Chemical factors in the sulphidization of copper oxide, Int. J. Miner. Process., 1(1974), No. 2, p. 141.
|
[18] |
K. Park, S. Park, J. Choi, G. Kim, M. Tong, and H. Kim, Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector, Sep. Purif. Technol., 168(2016), p. 1.
|
[19] |
Z. Li, M. Chen, X.W. Li, Z.W. Lei, J. Qu, P.W. Huang, Q.W. Zhang, and F. Saito, Surface modification of basic copper carbonate by mechanochemical processing with sulfur and ammonium sulfate, Adv. Powder Technol., 28(2017), No. 8, p. 1877.
|
[20] |
K. Lee, D. Archibald, J. McLean, and M. Reuter, Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors, Miner. Eng., 22(2009), No. 4, p. 395.
|
[21] |
Q.C. Feng, S.M. Wen, W.J. Zhao, Q.B. Cao, and C. Lü, A novel method for improving cerussite sulfidization, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 609.
|
[22] |
D.D. Wu, S.M. Wen, J.S. Deng, J. Liu, and Y.B. Mao, Study on the sulfidation behavior of smithsonite, Appl. Surf. Sci., 329(2015),p. 315.
|
[23] |
S. Raghavan, E. Adamec, and L. Lee, Sulfidization and flotation of chrysocolla and brochantite, Int. J. Miner. Process., 12(1984), No. 1-3, p. 173.
|
[24] |
J.A. Ober, Mineral Commodity Summaries 2016, U.S. Geological Survey, Reston, Virginia, 2016.
|
[25] |
Y.H. Hu, Z.Y. Gao, W. Sun, and X.W. Liu, Anisotropic surface energies and adsorption behaviors of scheelite crystal, Colloids Surf. A, 415(2012), p. 439.
|
[26] |
S.C. Chelgani, B. Hart, J. Marois, and M. Ourriban, Study of pyrochlore matrix composition effects on froth flotation by SEM–EDX, Miner. Eng., 30(2012), p. 62.
|
[27] |
R. Herrera-Urbina, F.J. Sotillo, and D.W. Fuerstenau, Amyl xanthate uptake by natural and sulfide-treated cerussite and galena, Int. J. Miner. Process., 55(1998), No. 2, p. 113.
|
[28] |
M. Barbaro, R.H. Urbina, C. Cozza, D. Fuerstenau, and A. Marabini, Flotation of oxidized minerals of copper using a new synthetic chelating reagent as collector, Int. J. Miner. Process., 50(1997), No. 4, p. 275.
|
[29] |
J.C.D. Gush, Flotation of oxide minerals by sulphidization-the development of a sulphidization control system for laboratory testwork, J. South Afr. Inst. Min. Metall., 105(2005), No.3, p. 193.
|
[30] |
W. Nyabeze and B. McFadzean, Adsorption of copper sulphate on PGM-bearing ores and its influence on froth stability and flotation kinetics, Miner. Eng., 92(2016), p. 28.
|
[31] |
R.Q. Liu, W. Sun, Y.H. Hu, and D.Z. Wang, Surface chemical study of the selective separation of chalcopyrite and marmatite, Min. Sci. Technol., 20(2010), No. 4, p. 542.
|
[32] |
Q.C. Feng, W.J. Zhao, S.M. Wen, and Q.B. Cao, Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector, Sep. Purif. Technol., 178(2017),p. 193.
|
[33] |
M.E. Holuszko, J.P. Franzidis, E.V. Manlapig, M.A. Hampton, B.C. Donose, and A. Nguyen, The effect of surface treatment and slime coatings on ZnS hydrophobicity, Miner. Eng., 21(2008), No. 12-14, p. 958.
|
[34] |
E. Potapova, X. Yang, M. Westerstrand, M. Grahn, A. Holmgren, and J. Hedlund, Interfacial properties of natural magnetite particles compared with their synthetic analogue, Miner. Eng., 36(2012), p. 187.
|
[35] |
S. Aghazadeh, S.K. Mousavinezhad, and M. Gharabaghi, Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals, Adv. colloid Interface Sci., 225(2015), p. 203.
|
[36] |
S. Antreich, S. Sassmann, and I. Lang, Limited accumulation of copper in heavy metal adapted mosses, Plant Physiol. Biochem., 101(2016), p. 141.
|
[37] |
T. Hirajima, G.P.W. Suyantara, O. Ichikawa, A.M. Elmahdy, H. Miki, and K. Sasaki, Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite, Miner. Eng., 96-97(2016), p. 83.
|
[38] |
P. Makreski, G. Jovanovski, B. Kaitner, A. Gajović, and T. Biljan, Minerals from Macedonia: XVⅢ. Vibrational spectra of some sorosilicates, Vib. Spectrosc., 44(2007), No. 1, p. 162.
|
[39] |
R.L. Frost, J.M. Bouzaid, and B. Jagannadha Reddy, Vibrational spectroscopy of the sorosilicate mineral hemimorphite Zn4(OH)2Si2O7·H2O, Polyhedron, 26(2007), No. 12, p. 2405.
|
[40] |
E.W. Giesekke, A review of spectroscopic techniques applied to the study of interactions between minerals and reagents in flotation systems, Int. J. Miner. Process., 11(1983), No. 1, p. 19.
|
[41] |
P. Persson and I. Persson, Interactions between sulfide minerals and alkylxanthate ions 3. A vibration spectroscopic, calorimetric and atomic absorption spectrophotometric study of the interaction between galena and ethylxanthate ions in aqueous solution, Colloids Surf., 58(1991), No.1-2, p. 161.
|
[42] |
J.O. Leppinen and J.K. Rastas, The interaction between ethyl xanthate ion and lead sulfide surface, Colloids Surf., 20(1986), No. 3, p. 221.
|
[43] |
C.A. Prestidge, J. Ralston, and R.S.C. Smart, The role of cyanide in the interaction of ethyl xanthate with galena, Colloids Surf. A, 81(1993), p. 103.
|
[44] |
B. Liu, X.M. Wang, H. Du, J. Liu, S.L. Zheng, Y. Zhang, and J.D. Miller, The surface features of lead activation in amyl xanthate flotation of quartz, Int. J. Miner. Process., 151(2016), p. 33.
|
[45] |
P. De Donato, J.M. Cases, M. Kongolo, L. Michot, and A. Burneau, Infrared investigation of amylxanthate Adsorption on galena: Influence of oxidation, pH and grinding, Colloids Surf., 44(1990),p. 207.
|
[46] |
C.I. Basilio, I.J. Kartio, and R.H. Yoon, Lead activation of sphalerite during galena flotation, Miner. Eng., 9(1996), No. 8, p. 869.
|
[47] |
R. Woods and G.A. Hope, Spectroelectrochemical investigations of the interaction of ethyl xanthate with copper, silver and gold: I. FT-Raman and NMR spectra of the xanthate compounds, Colloids Surf. A, 137(1998), No. 1-3, p. 319.
|
[48] |
P. Hellström, S. Öberg, A. Fredriksson, and A. Holmgren, A theoretical and experimental study of vibrational properties of alkyl xanthates, Spectrochim. Acta Part A, 65(2006), No. 3-4, p. 887.
|
[49] |
P. Sharma, K.H. Rao, K.S.E. Forssberg, and K. Natarajan, Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide minerals, Int. J. Miner. Process., 62(2001), No. 1-4, p. 3.
|
[50] |
K.P. Wang, L. Wang, M.L. Cao, and Q. Liu, Xanthation-modified polyacrylamide and spectroscopic investigation of its adsorption onto mineral surfaces, Miner. Eng., 39(2012), p. 1.
|
[51] |
S.A. Markgraf and A.S. Bhalla, Pyroelectric and dielectric properties of hemimorphite, Zn2Si2O7(OH)2·H2O, Mater. Lett., 8(1989), No. 5, p. 179.
|
[52] |
L. Chung-Cherng and S. Pouyan, Role of screw axes in dissolution of willemite, Geochim. Cosmochim. Acta, 57(1993), No. 8, p. 1649.
|
[53] |
P.L. Houston, Chemical Kinetics and Reaction Dynamics, Springer Netherlands, Berlin, Germany, 2006, p. 407.
|
[54] |
D. Fornasiero and J. Ralston, Effect of surface oxide/hydroxide products on the collectorless flotation of copper-activated sphalerite, Int. J. Miner. Process., 78(2006), No. 4, p. 231.
|
[55] |
J.Q. Jin, J.D. Miller, L.X. Dang, and C.D. Wick, Effect of Cu2+ activation on interfacial water structure at the sphalerite surface as studied by molecular dynamics simulation, Int. J. Miner. Process., 145(2015), p. 66.
|
[56] |
T. Khmeleva, W. Skinner, and D. Beattie, Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite, Int. J. Miner. Process., 76(2005), No. 1-2, p. 43.
|
[57] |
Z. Chen and R.H. Yoon, Electrochemistry of copper activation of sphalerite at pH 9.2, Int. J. Miner. Process., 58(2000), No. 1-4, p. 57.
|
[58] |
T. Albrecht, J. Addai-Mensah, and D. Fornasiero, Critical copper concentration in sphalerite flotation: Effect of temperature and collector, Int. J. Miner. Process., 146(2016), p. 15.
|
[59] |
F. Rashchi, C. Sui, and J.A. Finch, Sphalerite activation and surface Pb ion concentration, Int. J. Miner. Process., 67(2002), No. 1-4, p. 43.
|
[60] |
J. Laskowski, Q. Liu, and Y. Zhan, Sphalerite activation: Flotation and electrokinetic studies, Miner. Eng., 10(1997), No. 8, p. 787.
|