Cite this article as: |
Mohit Sharma, O. P. Modi, and Punit Kumar, Synthesis and characterization of copper foams through a powder metallurgy route using a compressible and lubricant space-holder material, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp. 902-912. https://doi.org/10.1007/s12613-018-1639-y |
Mohit Sharma E-mail: mohit826@gmail.com
[1] |
N. Dukhan, Metal Foams: Fundamentals and Applications, DEStech Publications, Pennsylvania, USA, 2012, p. 381.
|
[2] |
R. Goodall, Porous Metals: Foams and Sponges, [in] Advances in Powder Metallurgy: Properties, Properties and Applications, Woodhead publishing limited, Oxford, 2013, p. 273.
|
[3] |
F. Stergioudi, E. Kaprara, K. Simeonidis, D. Sagris, M. Mitrakas, G. Vourlias, and N. Michailidis, Copper foams in water treatment technology: removal of hexavalent chromium, Mater. Des., 87(2015), p. 287.
|
[4] |
H. Jo, Y. Cho, M. Choi, J. Cho, J.H. Um, Y. Sung, and H. Choe, Novel method of powder-based processing of copper nanofoams for their potential use in energy applications, Mater. Chem. Phys., 145(2014), No. 1-2, p. 6.
|
[5] |
A. Etiemble, J. Adrien, E. Maire, H. Idrissi, D. Reyter, and L. Roué, 3D morphological analysis of copper foams as current collectors for Li-ion batteries by means of X-ray tomography, Mater. Sci. Eng. B, 187(2014), p. 1.
|
[6] |
W. Lu, C.Y. Zhao, and S.A. Tassou, Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes, Int. J. Heat Mass Trans., 49(2006), No. 15-16, p. 2751.
|
[7] |
J.M. Baloyo, Open-cell porous metals for thermal management applications: fluid flow and heat transfer, J. Mater. Sci. Technol., 33(2017), No. 3, p. 265.
|
[8] |
C. Moon, D. Kim, G.B. Abadi, S.Y. Yoon, and K.C. Kim, Effect of ligament hollowness on heat transfer characteristics of open-cell metal foam, Int. J. Heat Mass Trans., 102(2016), p. 911.
|
[9] |
X.H. Liu, H.Y. Huang, and J.X. Xie, Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 687.
|
[10] |
M.F. Ashby, T. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley Metal Foams: A Design Guide, Butterworth Heinemann, USA, 2000, p. 6.
|
[11] |
J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46(2001), No. 6, p. 559.
|
[12] |
D.C. Dunand, Processing of titanium foams, Adv. Eng. Mater., 6(2004), No. 6, p. 369.
|
[13] |
M. Garcia-Avila and A. Rabiei, Effect of sphere properties on microstructure and mechanical performance of cast composite metal foams, Metals, 5(2015), No. 2, p. 822.
|
[14] |
M. Garcia-Avila, M. Portanova, and A. Rabiei, Ballistic performance of composite metal foams, Compos. Struct., 125(2015), p. 202.
|
[15] |
A.M. Parvanian, M. Saadatfar, M. Panjepour, A. Kingston, and A.P. Shepperd, The effects of manufacturing parameters on geometrical and mechanical properties of copper foams produced by space holder technique, Mater. Des., 53(2014), p. 681.
|
[16] |
A.M. Parvanian and M. Panjepour, Mechanical behavior improvement of open-pore copper foams synthesized through space holder technique, Mater. Des., 49(2013), p. 834.
|
[17] |
B. Ye and D.C. Dunand, Titanium foams produced by solid-state replication of NaCl powders, Mater. Sci. Eng. A, 528(2010), No. 2, p. 691.
|
[18] |
N. Jha, D.P. Mondal, J.D. Majumdar, A. Badkul, A.K. Jha, and A.K. Khare, Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route, Mater. Des., 47(2013), p. 810.
|
[19] |
J. Jakubowicz, G. Adamek, and M. Devidar, Titanium foam made with saccharose as a space holder, J. Porous Mater., 20(2013), No. 5, p. 1137.
|
[20] |
N. Michailidis, F. Stergioudi, A. Tsouknidas, and E. Pavlidou, Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1662.
|
[21] |
N. Bekoz, and E. Oktay, Effects of carbamide shape and content on processing and properties of steel foams, J. Mater. Process. Technol., 212(2012), No. 10, p. 2109.
|
[22] |
D.R. Tian, Y.H. Pang, L. Yu, and L. Sun, Production and characterization of high porosity porous Fe–Cr–C alloys by the space holder leaching technique, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 793.
|
[23] |
M. Sharma, G.K. Gupta, O.P. Modi, B.K. Prasad, and A.K. Gupta, Titanium foam through powder metallurgy route using acicular urea particle as space holder, Mater. Lett., 65(2011), No. 21-22, p. 3199.
|
[24] |
A. Mansourighasri, N. Muhamad, and A.B. Sulong, Processing titanium foams using tapioca starch as a space holder, J. Mater. Process. Technol., 212(2012), No. 1, p. 83.
|
[25] |
Y.M.Z. Ahmed, M.I. Riad, A.S. Sayed, M.K. Ahlam, and M.E.H. Shalabi, Correlation between factors controlling preparation of porous copper via sintering technique using experimental design, Powder Technol., 175(2007), No. 1, p. 48.
|
[26] |
Z. Esen and S. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Mater., 56(2007), No. 5, p. 341.
|
[27] |
I. Mutlu, S. Yeniyol, and E. Oktay, Production and precipitation hardening of beta-type Ti–35Nb–10Cu alloy foam for implant applications, J. Mater. Eng. Perferm., 25(2016), No. 4, p. 1586.
|
[28] |
B. Arifvianto and J. Zhou, Fabrication of metallic biomedical scaffolds with the space holder method: a review, Materials, 7(2014), No. 5, p. 3588.
|
[29] |
M. Khodaei, M. Meratian, and O. Savabi, Effect of spacer type and cold compaction pressure on structural and mechanical properties of porous titanium scaffold, Powder Metall., 58(2015), No. 2, p. 152.
|
[30] |
V. Amigó, L. Reig, D.J. Busquets, J.L. Ortiz, and J.A. Calero, Analysis of bending strength of porous titanium processed by space holder method, Powder Metall., 54(2011), No. 1, p. 67.
|
[31] |
M. Sharma, G.K. Gupta, O.P. Modi, and B.K. Prasad, PM processed titanium foam: influence of morphology and content of space holder on microstructure and mechanical properties, Powder Metall., 56(2013), No. 1, p. 55.
|
[32] |
B. Wang and E. Zhang, On the compressive behaviour of sintered porous coppers with low-to-medium porosities-Part Ⅱ: Preparation and microstructure, Int. J. Mech. Sci., 50(2008), No. 3, p. 550.
|
[33] |
J.Y. Xiong, Y.C. Li, X.J. Wang, P.D. Hodgson, and C.E. Wen, Titanium-nickel shape memory alloy foams for bone tissue engineering, J. Mech. Behav. Biomed. Mater., 1(2008), No. 3, p. 269.
|
[34] |
Y. Kanoko, K. Ameyama, S. Tanaka, and B. Hefler, Production of ultra-thin porous metal paper by fibre space holder method, Powder Metall., 57(2014), No. 3, p. 168.
|
[35] |
M.A. El-Hadek and S. Kaytbay, Mechanical and physical characterization of copper foam, Int. J. Mech. Mater. Des., 4(2008), No. 4, p. 63.
|
[36] |
Y.Y. Zhao, T. Fung, L.P. Zhang, and F.L. Zhang, Lost carbonate sintering process for manufacturing metal foams, Scripta Mater., 52(2005), No. 4, p. 295.
|
[37] |
J.G. Jia, A.R. Siddiq, and A.R. Kennedy, Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: characterisation and mechanical properties, J. Mech. Behav. Biomed. Mater., 48(2015), p. 229.
|
[38] |
M. Khodaei, M. Meratian, O. Savabi, and M. Razavi, The effect of pore structure on the mechanical properties of titanium scaffolds, Mater. Lett., 171(2016), p. 308.
|
[39] |
D.P. Mondal, M. Patel, S. Das, A.K. Jha, H. Jain, G. Gupta, and S.B. Arya, Titanium foam with coarser cell size and wide range of porosity using different types of evaporative space holders through powder metallurgy route, Mater. Des., 63(2014), p. 89.
|
[40] |
D.P. Mondal, M. Patel, H. Jain, A.K. Jha, S. Das, and R. Dasgupta, The effect of particle shape and strain rate on microstructure and compression deformation response of pure Ti-foam made using acrowax as space holder, Mater. Sci. Eng. A., 625(2015), p. 331.
|
[41] |
M. Sharma, O.P. Modi, and P. Kumar, Experimental modelling of copper foams processed through powder metallurgy route using a compressible space holder material, J. Porous Mater., 24(2017), No. 6, p. 1581.
|
[42] |
B.Q. Li and X. Lu, The effect of pore structure on the electrical conductivity of Ti, Transp. Porous Media, 87(2011), No. 1, p. 179.
|