Cite this article as: | Mohit Sharma, O. P. Modi, and Punit Kumar, Synthesis and characterization of copper foams through a powder metallurgy route using a compressible and lubricant space-holder material, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp.902-912. https://dx.doi.org/10.1007/s12613-018-1639-y |
N. Dukhan, Metal Foams: Fundamentals and Applications, DEStech Publications, Pennsylvania, USA, 2012, p. 381.
|
R. Goodall, Porous Metals: Foams and Sponges, [in] Advances in Powder Metallurgy: Properties, Properties and Applications, Woodhead publishing limited, Oxford, 2013, p. 273.
|
F. Stergioudi, E. Kaprara, K. Simeonidis, D. Sagris, M. Mitrakas, G. Vourlias, and N. Michailidis, Copper foams in water treatment technology: removal of hexavalent chromium, Mater. Des., 87(2015), p. 287.
|
H. Jo, Y. Cho, M. Choi, J. Cho, J.H. Um, Y. Sung, and H. Choe, Novel method of powder-based processing of copper nanofoams for their potential use in energy applications, Mater. Chem. Phys., 145(2014), No. 1-2, p. 6.
|
A. Etiemble, J. Adrien, E. Maire, H. Idrissi, D. Reyter, and L. Roué, 3D morphological analysis of copper foams as current collectors for Li-ion batteries by means of X-ray tomography, Mater. Sci. Eng. B, 187(2014), p. 1.
|
W. Lu, C.Y. Zhao, and S.A. Tassou, Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes, Int. J. Heat Mass Trans., 49(2006), No. 15-16, p. 2751.
|
J.M. Baloyo, Open-cell porous metals for thermal management applications: fluid flow and heat transfer, J. Mater. Sci. Technol., 33(2017), No. 3, p. 265.
|
C. Moon, D. Kim, G.B. Abadi, S.Y. Yoon, and K.C. Kim, Effect of ligament hollowness on heat transfer characteristics of open-cell metal foam, Int. J. Heat Mass Trans., 102(2016), p. 911.
|
X.H. Liu, H.Y. Huang, and J.X. Xie, Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 687.
|
M.F. Ashby, T. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley Metal Foams: A Design Guide, Butterworth Heinemann, USA, 2000, p. 6.
|
J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46(2001), No. 6, p. 559.
|
D.C. Dunand, Processing of titanium foams, Adv. Eng. Mater., 6(2004), No. 6, p. 369.
|
M. Garcia-Avila and A. Rabiei, Effect of sphere properties on microstructure and mechanical performance of cast composite metal foams, Metals, 5(2015), No. 2, p. 822.
|
M. Garcia-Avila, M. Portanova, and A. Rabiei, Ballistic performance of composite metal foams, Compos. Struct., 125(2015), p. 202.
|
A.M. Parvanian, M. Saadatfar, M. Panjepour, A. Kingston, and A.P. Shepperd, The effects of manufacturing parameters on geometrical and mechanical properties of copper foams produced by space holder technique, Mater. Des., 53(2014), p. 681.
|
A.M. Parvanian and M. Panjepour, Mechanical behavior improvement of open-pore copper foams synthesized through space holder technique, Mater. Des., 49(2013), p. 834.
|
B. Ye and D.C. Dunand, Titanium foams produced by solid-state replication of NaCl powders, Mater. Sci. Eng. A, 528(2010), No. 2, p. 691.
|
N. Jha, D.P. Mondal, J.D. Majumdar, A. Badkul, A.K. Jha, and A.K. Khare, Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route, Mater. Des., 47(2013), p. 810.
|
J. Jakubowicz, G. Adamek, and M. Devidar, Titanium foam made with saccharose as a space holder, J. Porous Mater., 20(2013), No. 5, p. 1137.
|
N. Michailidis, F. Stergioudi, A. Tsouknidas, and E. Pavlidou, Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1662.
|
N. Bekoz, and E. Oktay, Effects of carbamide shape and content on processing and properties of steel foams, J. Mater. Process. Technol., 212(2012), No. 10, p. 2109.
|
D.R. Tian, Y.H. Pang, L. Yu, and L. Sun, Production and characterization of high porosity porous Fe–Cr–C alloys by the space holder leaching technique, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 793.
|
M. Sharma, G.K. Gupta, O.P. Modi, B.K. Prasad, and A.K. Gupta, Titanium foam through powder metallurgy route using acicular urea particle as space holder, Mater. Lett., 65(2011), No. 21-22, p. 3199.
|
A. Mansourighasri, N. Muhamad, and A.B. Sulong, Processing titanium foams using tapioca starch as a space holder, J. Mater. Process. Technol., 212(2012), No. 1, p. 83.
|
Y.M.Z. Ahmed, M.I. Riad, A.S. Sayed, M.K. Ahlam, and M.E.H. Shalabi, Correlation between factors controlling preparation of porous copper via sintering technique using experimental design, Powder Technol., 175(2007), No. 1, p. 48.
|
Z. Esen and S. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Mater., 56(2007), No. 5, p. 341.
|
I. Mutlu, S. Yeniyol, and E. Oktay, Production and precipitation hardening of beta-type Ti–35Nb–10Cu alloy foam for implant applications, J. Mater. Eng. Perferm., 25(2016), No. 4, p. 1586.
|
B. Arifvianto and J. Zhou, Fabrication of metallic biomedical scaffolds with the space holder method: a review, Materials, 7(2014), No. 5, p. 3588.
|
M. Khodaei, M. Meratian, and O. Savabi, Effect of spacer type and cold compaction pressure on structural and mechanical properties of porous titanium scaffold, Powder Metall., 58(2015), No. 2, p. 152.
|
V. Amigó, L. Reig, D.J. Busquets, J.L. Ortiz, and J.A. Calero, Analysis of bending strength of porous titanium processed by space holder method, Powder Metall., 54(2011), No. 1, p. 67.
|
M. Sharma, G.K. Gupta, O.P. Modi, and B.K. Prasad, PM processed titanium foam: influence of morphology and content of space holder on microstructure and mechanical properties, Powder Metall., 56(2013), No. 1, p. 55.
|
B. Wang and E. Zhang, On the compressive behaviour of sintered porous coppers with low-to-medium porosities-Part Ⅱ: Preparation and microstructure, Int. J. Mech. Sci., 50(2008), No. 3, p. 550.
|
J.Y. Xiong, Y.C. Li, X.J. Wang, P.D. Hodgson, and C.E. Wen, Titanium-nickel shape memory alloy foams for bone tissue engineering, J. Mech. Behav. Biomed. Mater., 1(2008), No. 3, p. 269.
|
Y. Kanoko, K. Ameyama, S. Tanaka, and B. Hefler, Production of ultra-thin porous metal paper by fibre space holder method, Powder Metall., 57(2014), No. 3, p. 168.
|
M.A. El-Hadek and S. Kaytbay, Mechanical and physical characterization of copper foam, Int. J. Mech. Mater. Des., 4(2008), No. 4, p. 63.
|
Y.Y. Zhao, T. Fung, L.P. Zhang, and F.L. Zhang, Lost carbonate sintering process for manufacturing metal foams, Scripta Mater., 52(2005), No. 4, p. 295.
|
J.G. Jia, A.R. Siddiq, and A.R. Kennedy, Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: characterisation and mechanical properties, J. Mech. Behav. Biomed. Mater., 48(2015), p. 229.
|
M. Khodaei, M. Meratian, O. Savabi, and M. Razavi, The effect of pore structure on the mechanical properties of titanium scaffolds, Mater. Lett., 171(2016), p. 308.
|
D.P. Mondal, M. Patel, S. Das, A.K. Jha, H. Jain, G. Gupta, and S.B. Arya, Titanium foam with coarser cell size and wide range of porosity using different types of evaporative space holders through powder metallurgy route, Mater. Des., 63(2014), p. 89.
|
D.P. Mondal, M. Patel, H. Jain, A.K. Jha, S. Das, and R. Dasgupta, The effect of particle shape and strain rate on microstructure and compression deformation response of pure Ti-foam made using acrowax as space holder, Mater. Sci. Eng. A., 625(2015), p. 331.
|
M. Sharma, O.P. Modi, and P. Kumar, Experimental modelling of copper foams processed through powder metallurgy route using a compressible space holder material, J. Porous Mater., 24(2017), No. 6, p. 1581.
|
B.Q. Li and X. Lu, The effect of pore structure on the electrical conductivity of Ti, Transp. Porous Media, 87(2011), No. 1, p. 179.
|
1. | Sumit Ray, Siddharth, Sujoy Kumar Kar, et al. Effect of Porosity and Pore Morphology on the Elastic Properties and Compressive Deformation Behavior of Porous Copper Fabricated via Space‐Holder Route. Advanced Engineering Materials, 2025, 27(5) DOI:10.1002/adem.202401682 |
2. | Amir Motaharinia, Jaroslaw W Drelich, Safian Sharif, et al. Overview of porous magnesium-based scaffolds: development, properties and biomedical applications. Materials Futures, 2025, 4(1): 012401. DOI:10.1088/2752-5724/ad9493 |
3. | Bisma Parveez, Nur Ayuni Jamal, Syazwan Bin Mohammad Kadri, et al. Effect of addition of boron and B4C coated diamond on the microstructure and compressive behaviour of porous aluminium composites. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2025. DOI:10.1177/09544089251315603 |
4. | S. Bouchendouka, H. Lachenani, Y. Belaroussi, et al. Mechanical behavior of porous silicon: Ab initio and nanoindentation study. Materials Science and Technology, 2025. DOI:10.1177/02670836251316450 |
5. | Sriram Sathaiah, Lavkesh Singh, Nikhil R. Gorhe, et al. Effect of Compaction Pressure on Microstructural, Mechanical, and Thermal Properties of Aluminum Foams Processed through Space-Holder Technique. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-09614-0 |
6. | Sumit Ray, Sujoy Kumar Kar, Siddhartha Roy. An ultrasonic study of the effect of uniaxial green compaction pressure on the elastic anisotropy of porous copper fabricated using the pore-former route. Materials Chemistry and Physics, 2024, 316: 129094. DOI:10.1016/j.matchemphys.2024.129094 |
7. | Ankit Sharma, Sai Srinivasan Kanyadhan Vijayaraghavan, Amit Kumar Gupta, et al. B4C‐Reinforced Al–Zn Foams Having Superior Energy Absorption Efficiency. Advanced Engineering Materials, 2023, 25(1) DOI:10.1002/adem.202200810 |
8. | Sumit Ray, Prasanta Jana, Sujoy Kumar Kar, et al. Influence of monomodal K2CO3 and bimodal K2CO3 + NaCl as space holders on microstructure and mechanical properties of porous copper. Materials Science and Engineering: A, 2023, 862: 144516. DOI:10.1016/j.msea.2022.144516 |
9. | Guobin Zhang, Zhiguo Qu, Wen-Quan Tao, et al. Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges. Chemical Reviews, 2023, 123(3): 989. DOI:10.1021/acs.chemrev.2c00539 |
10. | Xiao Jian, Li Xin, Cai Yunhe, et al. The application of the model equation method in the preparation of porous copper by using needlelike and spherical carbamide as a space holder. Powder Metallurgy, 2023, 66(4): 365. DOI:10.1080/00325899.2023.2177015 |
11. | Prasanta Jana, Sumit Ray, Diya Goldar, et al. Study of the elastic properties of porous copper fabricated via the lost carbonate sintering process. Materials Science and Engineering: A, 2022, 836: 142713. DOI:10.1016/j.msea.2022.142713 |
12. | Bisma Parveez, Nur Ayuni Jamal, Hazleen Anuar, et al. Microstructure and Mechanical Properties of Metal Foams Fabricated via Melt Foaming and Powder Metallurgy Technique: A Review. Materials, 2022, 15(15): 5302. DOI:10.3390/ma15155302 |
13. | Bin Han, Yunyu Li, Zeyu Wang, et al. Temperature Effects on the Compressive Behaviors of Closed-Cell Copper Foams Prepared by Powder Metallurgy. Materials, 2021, 14(21): 6405. DOI:10.3390/ma14216405 |
14. | Hadi Miyanaji, Da Ma, Mark A. Atwater, et al. Binder jetting additive manufacturing of copper foam structures. Additive Manufacturing, 2020, 32: 100960. DOI:10.1016/j.addma.2019.100960 |
15. | M T Malachevsky, G Bertolino, E Oliber, et al. Tomographic characterization of copper cellular bodies fabricated by a powder metallurgy route. Materials Research Express, 2019, 6(5): 056531. DOI:10.1088/2053-1591/ab0310 |
16. | Mohit Sharma, Surjit Angra. Experimental modelling of powder metallurgical processed copper foams using acrawax as a space holder material. Journal of Physics: Conference Series, 2019, 1240(1): 012054. DOI:10.1088/1742-6596/1240/1/012054 |