Cite this article as: |
Yan-ping Zeng, Jin-dou Jia, Wen-he Cai, Shu-qing Dong, and Zhi-chun Wang, Effect of long-term service on the precipitates in P92 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp. 913-921. https://doi.org/10.1007/s12613-018-1640-5 |
Yan-ping Zeng E-mail: zengyanping@mater.ustb.edu.cn
[1] |
F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Int., 41(2001), No. 6, p. 612.
|
[2] |
P.J. Ennis, A. Zielinska-lipiec, O. Wachter, and A. Czyrska-filemonowicz, Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant, Acta Mater., 45(1997), No. 12, p. 4901.
|
[3] |
P.J. Ennis, A. Zielińska-Lipiec, and A. Czyrska-Filemonowicz,Influence of heat treatments on microstructural parameters and mechanical properties of P92 steel, Mater. Sci. Technol., 16(2000), No. 10, p. 1226.
|
[4] |
L. Zhao, H.Y. Jing, J.J. Xiu, Y.D. Han, and L.Y. Xu, Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint, Mater. Des., 57(2014), p. 736.
|
[5] |
R. Viswanathan, K. Coleman, and U. Rao, Materials for ultra-supercritical coal-fired power plant boilers, Int. J. Press. Vessels Pip., 83(2006), No. 11-12, p. 778.
|
[6] |
J. Cao, Y. Gong, Z.G. Yang, X.M. Luo, F.M. Gu, and Z.F. Hu, Creep fracture behavior of dissimilar weld joints between T92 martensitic and HR3C austenitic steels, Int. J. Press. Vessels Pip., 88(2011), No. 2-3, p. 94.
|
[7] |
J. Jiang, L.H. Zhu, and Y.F. Wang, Hardness variation in P92 heat-resistant steel based on microstructural evolution during creep, Steel Res. Int., 84(2013), No. 8, p. 732.
|
[8] |
M. Nie, J. Zhang, F. Huang, J.W. Liu, X.K. Zhu, Z.L. Chen, and L.Z. Ouyang, Microstructure evolution and life assessment of T92 steel during long-term creep, J. Alloys Compd., 588(2014), p. 348.
|
[9] |
T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S.Panneer Selvi, V. Maduraimuthu, and M.D. Mathew, Creep rupture behavior of 9Cr–1.8W–0.5Mo–VNb (ASME grade 92) ferritic steel weld joint, Mater. Sci. Eng. A, 591(2014), p. 111.
|
[10] |
D.R. Barbadikar, A.R. Ballal, D.R. Peshwe, J. Ganeshkumar, K. Laha, and M.D. Mathew, A study on the effect of tempering temperature on tensile properties of P92 steel by automated ball indentation technique, Procedia Eng., 86(2014), p. 910.
|
[11] |
Y.Z. Shen, H. Liu, Z.X. Shang, and Z.Q. Xu, Precipitate phases in normalized and tempered ferritic/martensitic steel P92, J. Nucl. Mater., 465(2015), p. 373.
|
[12] |
A. Kostka, K.G. Tak, R.J. Hellmig, Y. Estrin, and G. Eggeler, On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels, Acta Mater., 55(2007), No. 2, p. 539.
|
[13] |
K. Maile, Evaluation of microstructural parameters in 9–12% Cr-steels, Int. J. Press. Vessels Pip., 84(2007), No. 1-2, p. 62.
|
[14] |
A. Zielińska-Lipiec, A. Czyrska-Filemonowicz, P.J. Ennis, and O. Wachter, The influence of heat treatments on the microstructure of 9% chromium steels containing tungsten, J. Mater. Process. Technol., 64(1997), No. 1-3, p. 397.
|
[15] |
X.F. Guo, J.M. Gong, Y. Jiang, and D.S. Rong, The influence of long-term aging on microstructures and static mechanical properties of P92 steel at room temperature, Mater. Sci. Eng. A, 564(2013), p. 199.
|
[16] |
F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants, Sci. Technol. Adv. Mater., 9(2008), No. 1, art. No. 013002.
|
[17] |
K. Sawada, K. Kubo, and F. Abe, Creep behavior and stability of MX precipitates at high temperature in 9Cr–0.5Mo– 1.8W–VNb steel, Mater. Sci. Eng. A, 319-321(2001), p. 784.
|
[18] |
J.S. Lee, H. Ghassemi Armaki, K. Maruyama, T. Muraki, and H. Asahi, Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–VNb steel, Mater. Sci. Eng. A, 428(2006), No. 1-2, p. 270.
|
[19] |
H.K. Danielsen and J. Hald, Behaviour of Z phase in 9–12%Cr steels, Energy Mater., 1(2006), No. 1, p. 49.
|
[20] |
M. Hattestrand, M. Schwind, and H.O. Andrén, Microanalysis of two creep resistant 9–12% chromium steels, Mater. Sci. Eng. A, 250(1998), No. 1, p. 27.
|
[21] |
K. Rodak, A. Hernas, and A. Kielbus, Substructure stability of highly alloyed martensitic steels for power industry, Mater. Chem. Phys., 81(2003), No. 2-3, p. 483.
|
[22] |
H. Cerjak, P. Hofer, and B. Schaffernak, The influence of microstructural aspects on the service behaviour of advanced power plant steels, ISIJ Int., 39(1999), No. 9, p. 874.
|
[23] |
M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H.G. Armaki, and K. Maruyama, Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants, Mater. Sci. Eng. A, 510-511(2009), p. 162.
|
[24] |
A. Fedoseeva, N. Dudova, and R. Kaibyshev, Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel, Mater. Sci. Eng. A, 654(2016), p. 1.
|
[25] |
H.R. Cui, F. Sun, K. Chen, L.T. Zhang, R.C. Wan, A.D. Shan, and J.S. Wu, Precipitation behavior of Laves phase in 10%Cr steel X12CrMoWVNbN10-1-1 during short-term creep exposure, Mater. Sci. Eng. A, 527(2010), No. 29-30, p. 7505.
|
[26] |
Y.Z. Shen, S.H. Kim, C.H. Han, H.D. Cho, W.S. Ryu, and C.B. Lee, Vanadium nitride precipitate phase in a 9% chromium steel for nuclear power plant applications, J. Nucl. Mater., 374(2008), No. 3, p. 403.
|
[27] |
O. Prat, J. Garcia, D. Rojas, G. Sauthoff, and G. Inden, The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels, Intermetallics, 32(2013), p. 362.
|
[28] |
Q. Li, Precipitation of Fe2W Laves phase and modeling of its direct influence on the strength of a 12Cr-2W steel, Metall. Mater. Trans. A, 37(2006), No. 1, p. 89.
|
[29] |
K. Yamamoto, Y. Kimura, and Y. Mishima, Effect of matrix microstructure on precipitation of Laves phase in Fe–10Cr–1.4W(–Co) alloys, Intermetallics, 14(2006), No. 5, p. 515.
|
[30] |
G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak, Quantification of the Laves phase in advanced 9–12% Cr steels using a standard SEM, Mater. Charact., 51(2003), No. 5, p. 341.
|
[31] |
F. Abe, Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr–W steels, Mater. Sci. Eng. A, 387-389(2004), p. 565.
|
[32] |
K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, and R. Komine, Effect of W on recovery of lath structure during creep of high chromium martensitic steels, Mater. Sci. Eng. A, 267(1999), No. 1, p. 19.
|
[33] |
F. Abe, T. Horiuchi, M. Taneike, and K. Sawada, Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature, Mater. Sci. Eng. A, 378(2004), No. 1-2, p. 299.
|
[34] |
F. Abe, S. Nakazawa, H. Araki, and T. Noda, The role of microstructural instability on creep-behavior of a martensitic 9Cr-2W steel, Metall. Trans. A, 23(1992), No. 2, p. 469.
|
[35] |
K. Maruyama, K. Sawada, and J.-I. Koike, Strengthening mechanisms of creep resistant tempered martensitic steel, ISIJ Int., 41(2001), No. 6, p. 641.
|
[36] |
J. Hald, Microstructure and long-term creep properties of 9-12% Cr steels, Int. J. Press. Vessels Pip., 85(2008), No. 1-2, p. 30.
|
[37] |
J. Hald, L. Korcakova, H.K. Danielsen, and K.V. Dahl, Thermodynamic and kinetic modeling: creep resistant materials, Mater. Sci. Technol., 24(2008), No. 2, p. 149.
|
[38] |
Å. Gustafson and J. Ågren, Possible effect of Co on coarsening of M23C6 carbide and Orowan stress in a 9% Cr steel, ISIJ Int., 41(2001), No. 4, p. 356.
|
[39] |
A. Kipelova, M. Odnobokova, A. Belyakov, and R. Kaibyshev, Effect of Co on creep behavior of a P911 steel, Metall. Mater. Trans. A, 44(2013), No. 1, p. 577.
|
[40] |
K. Hamada, K. Tokuno, Y. Tomita, H. Mabuchi, and K. Okamoto, Effects of precipitate shape on high temperature strength of modified 9Cr–1Mo steels, ISIJ Int., 35(1995), No. 1, p. 86.
|
[41] |
H.K. Danielsen and J. Hald, A thermodynamic model of the Z-phase Cr(V, Nb)N, Calphad, 31(2007), No. 4, p. 505.
|
[42] |
K. Sawada, H. Kushima, and K. Kimura, Z-phase formation during creep and aging in 9–12% Cr heat resistant steels, ISIJ Int., 46(2006), No. 5, p. 769.
|
[43] |
A. Golpayegani, H.O. Andrén, H. Danielsen, and J. Hald, A study on Z-phase nucleation in martensitic chromium steels, Mater. Sci. Eng. A, 489(2008), No. 1-2, p. 310.
|
[44] |
H.K. Danielsen and J. Hald, On the nucleation and dissolution process of Z-phase Cr(V, Nb)N in martensitic 12%Cr steels, Mater. Sci. Eng. A, 505(2009), No. 1-2, p. 169.
|
[45] |
X.S. Zhou, Y.C. Liu, C.X. Liu, L.M. Yu, and H.J. Li, Formation and evolution of precipitates in high Cr ferritic heat-resistant steels, Mater. Res. Innovations, 19(2015), No. S4, p. S193.
|
[46] |
J. Hald and H.K. Danielsen, Z-phase strengthened martensitic 9–12%Cr steels, [in] Proceedings of 3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plants, Tsukuba, 2009, p. 1.
|
[47] |
H.K. Danielsen, P.E. Di Nunzio, and J. Hald, Kinetics of Z-phase precipitation in 9 to 12 pct Cr steels, Metall. Mater. Trans. A, 44(2013), No. 5, p. 2445.
|
[48] |
K.H. Lee, S.M. Hong, J.H. Shim, J.Y. Suh, J.Y. Huh, and W.S. Jung, Effect of Nb addition on Z-phase formation and creep strength in high-Cr martensitic heat-resistant steels, Mater. Charact., 102(2015), p. 79.
|
[49] |
L. Cipolla, H.K. Danielsen, P.E. Di Nunzio, D. Venditti, J. Hald, and M.A.J. Somers, On the role of Nb in Z-phase formation in a 12% Cr steel, Scripta Mater., 63(2010), No. 3, p. 324.
|