Cite this article as: |
Zhi-yong Liu, Ying Cheng, Yan-xiang Li, Xu Zhou, Xiang Chen, and Ning-zhen Wang, Shape formation of closed-cell aluminum foam in solid–liquid–gas coexisting state, Int. J. Miner. Metall. Mater., 25(2018), No. 8, pp. 974-980. https://doi.org/10.1007/s12613-018-1647-y |
Yan-xiang Li E-mail: yanxiang@tsinghua.edu.cn
[1] |
A. Azarniya, F. Salatin, M. R. Eskandaripoor, and R. Rasooli, A kinetic study on the mechanism of hydrogen evolution in Ni-P coated titanium hydride powder, Adv. Powder Technol., 26(2015), No. 1, p. 259.
|
[2] |
C.P. Liang and H.R. Gong, Fundamental mechanism of tetragonal transitions in titanium hydride, Mater. Lett., 115(2014), p. 252.
|
[3] |
C. Borchers, A.V. Leonov, T.I. Khomenko, and O.S. Morozova, Mechanism and kinetics of mechanically induced transformation of titanium and titanium hydride: Effect of reaction medium on microstructure, morphology and hydrogen-uptake properties, J. Mater. Sci., 39(2004), No. 16-17, p. 5259.
|
[4] |
S.H. Elahi, H. Abdi, and H.R. Shahverdi, Investigating viscosity variations of molten aluminum by calcium addition and stirring, Mater. Lett., 91(2013), p. 376.
|
[5] |
H. Utsunomiya and R. Matsumoto, Deformation processes of porous metals and metallic foams (Review), Proc. Mater. Sci., 4(2014), p. 245.
|
[6] |
X.C. Xia, X.W. Chen, Z. Zhang, X. Chen, W.M. Zhao, B. Liao, and B.Y. Hur. Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres, Mater. Des., 56(2014), p. 353.
|
[7] |
P.M. Proa-Flores, G. Mendoza-Suarez, and R.A.L. Drew, Effect of TiH2 particle size distribution on aluminum foaming using the powder metallurgy method, J. Mater. Sci., 47(2012), No. 1, p. 455.
|
[8] |
H.M. Helwig, F. Garcia-Moreno, and J. Banhart, A study of Mg and Cu additions on the foaming behavior of Al-Si alloys, J. Mater. Sci., 46(2011), No. 15, p. 5227.
|
[9] |
M.C. Flemings, Behavior of metal alloys in the semisolid state, Metall. Trans. A, 22(1991), No. 3, p. 957.
|
[10] |
H.L. Yang, Z.L. Zhang, and I. Ohnaka, Structure evolution and compressive behavior of semi-solid Al-Si hypoeutectic alloy with re-melting heat treatment, J. Mater. Process. Technol., 151(2004), No. 1-3, p. 155.
|
[11] |
Y. Cheng, Y.X. Li, X. Chen, T. Shi, Z.Y. Liu, and N.Z. Wang, Fabrication of aluminum foams with small pore size by melt foaming method, Metall. Mater. Trans. B, 48(2017), No. 2, p. 754.
|
[12] |
Z.Y Liu, W.M. Mao, W.P. Wang, and Z.K. Zheng, Preparation of semi-solid A380 aluminum alloy slurry by serpentine channel, Trans. Nonferrous Met. Soc. China, 25(2015), No. 5, p. 1419.
|
[13] |
Y.J. Zhang, W.M. Mao, Z.D. Zhao, and Z. Liu, Rheological behavior of semi-solid A356 aluminum alloy at steady state, Acta Metall. Sin., 42(2006), No. 2, p. 163.
|
[14] |
C.C. Yang and H. Nakae, The effects of viscosity and cooling conditions on the foamability of aluminum alloy, J. Mater. Process. Techonol., 141(2003), No. 2, p. 202.
|
[15] |
L.Q. Ma and Z.L. Song, Cellular structure control of aluminium foams during foaming process of aluminium melt, Scripta Mater., 39(1998), No. 11, p. 1523.
|
[16] |
S.A. Mohamed, Behavior of closed cell aluminum foams upon conpressive testing at elevated temperatures: Exprimental results, Mater. Lett., 61(2007), No. 14-15, p. 3138.
|
[17] |
H. Ye, M.Y. Ma, and J.L. Yu. Anomalies in mid-high-temperature linear thermal expansion coefficient of the closed-cell aluminum foam, Chin. Sci. Bull., 59(2014), No. 28, p. 3669.
|
[18] |
M.A. Islam, M.A. Kader, P.J. Hazell, A.D. Brown, M. Saasatfar, M.Z. Quadir, and J.P. Escobedo, Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams, Mater. Sci. Eng. A, 666(2016), p. 245.
|