Le-ping Wang, Gang Chen, Qi-xin Shen, Guo-min Li, Shi-you Guan, and Bing Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp. 1027-1034. https://doi.org/10.1007/s12613-018-1653-0
Cite this article as:
Le-ping Wang, Gang Chen, Qi-xin Shen, Guo-min Li, Shi-you Guan, and Bing Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp. 1027-1034. https://doi.org/10.1007/s12613-018-1653-0
Research Article

Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries

+ Author Affiliations
  • Corresponding author:

    Bing Li    E-mail: bingli@ecust.edu.cn

  • Received: 11 January 2018Revised: 16 April 2018Accepted: 19 April 2018
  • SnCo alloy nanowires were successfully electrodeposited from SnCl2-CoCl2-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid without a template. The nanowires were obtained from the molar ratio of 5:40:60 for SnCl2:CoCl2:EMIC at -0.55 V and showed a minimum diameter of about 50 nm and lengths of over 20 μm. The as-fabricated SnCo nanowires were about 70 nm in diameter and featured a Sn/Co weight ratio of 3.85:1, when used as an anode for a Li-ion battery, they presented respective specific capacities of 687 and 678 mAh·g-1 after the first charge and discharge cycle and maintained capacities of about 654 mAh·g-1 after 60 cycles and 539 mAh·g-1 after 80 cycles at a current density of 300 mA·g-1. Both the nanowire structure and presence of elemental Co helped buffer large volume changes in the Sn anode during charging and discharging to a certain extent, thereby improving the cycling performance of the Sn anode.
  • loading
  • [1]
    J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), p. 359.
    [2]
    T. Li, J.Y. Yang, and S.G. Lu, Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 19(2012), No. 8, p. 752.
    [3]
    T. Huang, Y. Yao, Z. Wei, Z. Liu, and A.S. Yu, Sn-Co-artificial graphite composite as anode maNo. 1, p. 476.
    [4]
    R. Yang, J. Huang, W. Zhao, W.Z. Lai, X.Z. Zhang, J. Zheng, and X.G. Li, Bubble assisted synthesis of Sn-Sb-Cu alloy hollow nanostructures and their improved lithium storage properties, J. Power Sources, 195(2010), No. 19, p. 6811.
    [5]
    M.J. Lindsay, G.X. Wang, and H.K. Liu, Al-based anode materials for Li-ion batteries, J. Power Sources, 119(2003), p. 84.
    [6]
    T. Huang, Y. Yao, Z. Wei, Z. Liu, and A.S. Yu, Sn-Co-artificial graphite composite as anode material for rechargeable lithium batteries, Electrochim. Acta, 56(2010), No. 1, p. 476.
    [7]
    D.H. Nam, R.H. Kim, C.L. Lee, and H. Kwon, Highly reversible Sn-Co alloy anode using porous Cu foam substrate for Li-ion batteries, J. Electrochem. Soc., 159(2012), No. 11, p. A1822.
    [8]
    J. Hassoun, S. Panero, G. Mulas, and B. Scrosati. An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries, J. Power Sources, 171(2007), No. 2, p. 928.
    [9]
    J. Hassoun, S. Panero, P. Simon, P.L. Taberna, and B. Scrosati, High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries, Adv. Mater., 19(2007), No. 12, p. 1632.
    [10]
    N. Tamura, M. Fujimoto, M. Kamino, and S. Fujitani, Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries, Electrochim. Acta, 49(2004), No. 12, p. 1949.
    [11]
    J.Z. Wang, N. Du, H. Zhang, J.X. Yu, and D.R. Yang, Cu-Sn core-shell nanowires arrays as three-dimensional electrodes for lithium-ion batteries, J. Phys. Chem. C, 115(2011), No. 47, p. 23620.
    [12]
    J. Yi, Y.L. Liu, Y. Wang, X.P. Li, S.J. Hu, and W.S. Li, Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances, Int. J. Miner. Metall. Mater., 19(2012), No. 11, p. 1058.
    [13]
    G. Ferrara, L. Damen, C. Arbizzani, R. Inguanta, S. Piazza, C. Sunseri, and M. Mastragostino, SnCo nanowire array as negative electrode for lithium-ion batteries, J. Power Sources, 196(2011), No. 3, p. 1469.
    [14]
    M. Tian, W. Wang, S.H. Lee, Y.C. Lee, and R.G. Yang, Enhancing Ni-Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces, J. Power Sources, 196(2011), No. 23, p. 10207.
    [15]
    C.J. Su, Y.T. Hsieh, C.C. Chen, and I.W. Sun, Electrodeposition of aluminum wires from the Lewis acidic AlCl3/trimethylamine hydrochloride ionic liquid without using a template, Electrochem. Commun., 34(2013), p. 170.
    [16]
    J. Szymczak, S. Legeai, S. Diliberto, S. Migot, N. Stein, C. Boulanger, G. Chatel, and M. Draye, Template-free electrodeposition of tellurium nanostructures in a room-temperature ionic liquid, Electrochem. Commun., 24(2012), p. 57.
    [17]
    Y.Q. Chen, H. Wang, and B. Li, Electrodeposition of SmCo alloy nanowires with a large length-diameter ratio from SmCl3-CoCl2-1-ethyl-3-methylimidazolium chloride ionic liquid without template, RSC Adv., 5(2015), No. 49, p. 39620.
    [18]
    G. Chen, Y.Q. Chen, Q.J. Guo, H. Wang, and B. Li, Template-free electrodeposition of AlFe alloy nanowires from a room-temperature ionic liquid as an anode material for Li-ion batteries, Faraday Discuss., 190(2016), p. 97.
    [19]
    Y.T. Hsieh and I.W. Sun, Electrochemical growth of hierarchical CuSn nanobrushes from an ionic liquid, Electrochem. Commun., 13(2011), No. 12, p. 1510.
    [20]
    S.I. Lee, S. Yoon, C.M. Park, J.M. Lee, H. Kim, D. Im, S.G. Doo, and H.J. Sohn, Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anode for Li-ion batteries, Electrochim. Acta, 54(2009), No. 2, p. 364.
    [21]
    J.C. He, H.L. Zhao, M.W. Wang, and X.D. Jia, Preparation and characterization of Co-Sn-C anodes for lithium-ion batteries, Mater. Sci. Eng. B, 171(2010), No. 1-3, p. 35.
    [22]
    M.Z. Xue and Z.W. Fu, Electrochemical reactions of lithium with transition metal stannides, Solid State Ionics, 177(2006), No. 17-18, p. 1501.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(567) PDF Downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return