Cite this article as: |
Ainaz Agh and Alireza Amini, Investigation of the stress rupture behavior of GTD-111 superalloy melted by VIM/VAR, Int. J. Miner. Metall. Mater., 25(2018), No. 9, pp. 1035-1041. https://doi.org/10.1007/s12613-018-1654-z |
Ainaz Agh E-mail: ainazwhite@gmail.com
[1] |
S.A. Sajjadi, S. Nategh, and R.I.L. Guthrie, Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111, Mater. Sci. Eng. A, 325(2002), No. 1-2, p. 484.
|
[2] |
B.G. Choi, I.S. Kim, D.H. Kim, and C.Y. Jo, Temperature dependence of MC decomposition behavior in Ni-base superalloy GTD 111, Mater. Sci. Eng. A, 478(2008), No. 1-2, p. 329.
|
[3] |
H.I. Kim, H.S. Park, J.M. Koo, C.S. Seok, S.H. Yang, and M. Y. Kim, Microstructural investigation of GTD 111DS materials in the heat treatment conditions, J. Mech. Sci. Technol., 26(2012). No. 7, p. 2019.
|
[4] |
S.A. Sajjadi, S.M. Zebarjad, R.I. L. Guthrie, and M. Isac, Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters, J. Mater. Process. Technol., 175(2006), No. 1-3, p. 376.
|
[5] |
C.X. Yang, Y.L. Xu, Z.X. Zhang, H. Nie, X.S. Xiao, G.Q. Jia, and Z. Shen, Improvement of stress-rupture life of GTD-111 by second solution heat treatment, Mater. Des., 45(2013), p. 308.
|
[6] |
S.A. Sajjadi and S. Nategh, A high temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111, Mater. Sci. Eng. A, 307(2001), No. 1-2, p. 158.
|
[7] |
S. Sathian, Metallurgical and Mechanical Properties of Ni-Based Superalloy Friction Welds[Dissertation], University of Toronto, Toronto, 1999.
|
[8] |
S.A. Sajjadi, S. Nategh, M. Isac, and S.M. Zebarjad, Tensile deformation mechanisms at different temperatures in the Ni-base superalloy GTD-111, J. Mater. Process. Technol., 155(2004), p. 1900.
|
[9] |
S. Nategh and S.A. Sajjadi, Dislocation network formation during creep in Ni-base superalloy GTD-111, Mater. Sci. Eng. A, 339(2003), No. 1-2, p. 103.
|
[10] |
J.J. Yu, X.F. Sun, T. Jin, N.R. Zhao, H.R. Guan, and Z.Q. Hu, High temperature creep and low cycle fatigue of a nickel-base superalloy, Mater. Sci. Eng. A, 527(2010), No. 9, p. 2379.
|
[11] |
ASTM, E139-11, Standard Test Method for Conducting Creep, Creep-Rupture and Stress-Rupture Tests of Metallic Materials, American Society for Testing and Materials, Philadelphia, 2011.
|
[12] |
J. Ding, S. Jiang, Y.M. Li, Y.T. Wu, J. Wu, Y.Y. Peng, X. He, X.C. Xia, C. Li, and Y.C. Liu, Microstructure evolution behavior of Ni3Al (γ') phase in eutectic γ-γ' of Ni3Al-based alloy, Intermetallics, 98(2018), p. 28.
|
[13] |
R. Kakitani, R.V. Reyes, A. Garcia, J.E. Spinelli, and N. Cheung, Relationship between spacing of eutectic colonies and tensile properties of transient directionally solidified Al-Ni eutectic alloy, J. Alloys Compd., 733(2018), p. 59.
|
[14] |
W.F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, New York, 1987.
|
[15] |
J.L. Liu, T. Jin, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Effect of thermal exposure on stress rupture properties of a Re bearing Ni base single crystal superalloy, Mater. Sci. Eng. A, 527(2010), No. 4-5, p. 890.
|
[16] |
G.S. Ansell and J.W. Weertman, Creep of Dispersion-Hardened Aluminum Alloy, Naval Research Lab., Washington DC, 1958.
|
[17] |
H.J. Chang, M.C. Fivel, and J.L. Strudel, Micromechanics of primary creep in Ni base superalloys. Int. J. Plast., 108(2018), p. 21.
|