Microstructure, mechanical properties, and wear resistance of VCp-reinforced Fe-matrix composites treated by Q&P process
-
Graphical Abstract
-
Abstract
A quenching and partitioning (Q&P) process was applied to vanadium carbide particle (VCp)-reinforced Fe-matrix composites (VC-Fe-MCs) to obtain a multiphase microstructure comprising VC, V8C7, M3C, α-Fe, and γ-Fe. The effects of the austenitizing temperature and the quenching temperature on the microstructure, mechanical properties, and wear resistance of the VC-Fe-MCs were studied. The results show that the size of the carbide became coarse and that the shape of some particles began to transform from diffused graininess into a chrysanthemum-shaped structure with increasing austenitizing temperature. The microhardness decreased with increasing austenitizing temperature but substantially increased after wear testing compared with the microhardness before wear testing; the microhardness values improved by 20.0% ±2.5%. Retained austenite enhanced the impact toughness and promoted the transformation-induced plasticity (TRIP) effect to improve wear resistance under certain load conditions.
-
-