Xiong Chen, Guo-hua Gu, Li-juan Li, and Ren-feng Zhu, The selective effect of food-grade guar gum on chalcopyrite-monoclinic pyrrhotite separation using mixed aerofloat (CSU11) as collector, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp. 1123-1131. https://doi.org/10.1007/s12613-018-1663-y
Cite this article as:
Xiong Chen, Guo-hua Gu, Li-juan Li, and Ren-feng Zhu, The selective effect of food-grade guar gum on chalcopyrite-monoclinic pyrrhotite separation using mixed aerofloat (CSU11) as collector, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp. 1123-1131. https://doi.org/10.1007/s12613-018-1663-y
Research Article

The selective effect of food-grade guar gum on chalcopyrite-monoclinic pyrrhotite separation using mixed aerofloat (CSU11) as collector

+ Author Affiliations
  • Corresponding author:

    Guo-hua Gu    E-mail: guguohua@126.com

  • Received: 5 February 2018Revised: 10 May 2018Accepted: 23 May 2018
  • The flotation separation of chalcopyrite from monoclinic pyrrhotite using food-grade guar gum (FGG) as a depressant was studied through flotation tests, kinetic studies, dynamic potential measurements, adsorption experiments, and infrared spectral analyses. The microflotation results showed that the flotation separation of chalcopyrite from monoclinic pyrrhotite could not be realized by adding mixed aerofloat (CSU11) alone. The depressant FGG exhibited a selective depression effect on monoclinic pyrrhotite by controlling the pulp pH range from 5.0 to 6.0, with a maximum floatability variation of 79.36% in the presence of CSU11. The flotation kinetics, zeta-potential, adsorption, and infrared spectroscopy studies revealed that the FGG could absorb more strongly on the surface of monoclinic pyrrhotite than on the surface of chalcopyrite. In addition, the results revealed that the interaction of FGG with the monoclinic pyrrhotite surface was governed primarily by strong chemisorption, whereas FGG mainly bonded to chalcopyrite through hydrogen bonding. This difference was responsible for the excellent depression selectivity of FGG toward monoclinic pyrrhotite flotation and weak depression effect toward chalcopyrite flotation.
  • loading
  • [1]
    G.Z. Qiu, Y.H. Hu, Q.M. Feng, and T. Jiang, The mineral processing of 21 century, Sci.Chinese, 5(1997), p. 23.
    [2]
    K.E. Waters, N.A. Rowson, R.W. Greenwood, and A.J. Williams, The effect of heat treatment on the magnetic properties of pyrite, Miner. Eng., 21(2008), No. 9, p. 679.
    [3]
    C.V. Díaz-López, E.T. Pecina-Treviño, and E. Orrantia-Borunda, A study of bioflotation of chalcopyrite and pyrrhotite mixtures in presence of ferrooxidans, Can. Metall. Q., 51(2001), No. 2, p. 118.
    [4]
    S.A. Allison and C.T. O'Connor, An investigation into the flotation behaviour of pyrrhotite, Int. J. Miner. Process., 98(2011), No. 3-4, p. 202.
    [5]
    C. Tukel and S. Kelebek, Modulation of xanthate action by sulphite ions in pyrrhotite deactivation/depression, Int. J. Miner. Process., 95(2010), No. 1-4, p. 47.
    [6]
    A.P. Chandra and A.R. Gerson, A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite, Adv. Colloid Interface Sci., 145(2009), No. 1-2, p. 97.
    [7]
    X.Y. Qiu, X.F. Ma, X.J. He, and C.S. Luo, Research progress in flotation separation of pyrrhotite from chalcopyrite, Min. Eng., 12(2011). No. 6, p. 29.
    [8]
    Q. Zhang, Y.H. Hu, G.H. Gu, and J. Xu, Selective flotation separation of jamesonite from pyrrhotite by lime, Min. Metall. Eng., 24(2004), No. 2, p. 30.
    [9]
    A. Gül, A.E. Yüce, A.A. Sirkeci, and M. Özer, Use of non-toxic depressants in the selective flotation of copper-lead-zinc ores, Can. Metall. Q., 47(2008), No. 2, p. 111.
    [10]
    Z. Wang, Y.L. Qian, L.H. Xu, B. Dai, J.H. Xiao, and K.B. Fu, Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant, Miner. Eng., 74(2015), p. 86.
    [11]
    R.H. Yoon, C.I. Basilio, M.A. Marticorena, A.N. Kerr, and R. Stratton-Crawley, A study of the pyrrhotite depression mechanism by diethylenetriamine, Miner. Eng., 8(1995), No. 7, p. 807.
    [12]
    E. Bogusz, S.R. Brienne, I. Butler, S.R. Rao, and J.A. Finch, Metal ions and dextrin adsorption on pyrite, Miner. Eng., 10(1997), No. 4, p. 441.
    [13]
    N.J. Bolin and J.S. Laskowski, Polysaccharides in flotation of sulfides (Part Ⅱ):Copper/lead separation with dextrin and sodium hydroxide, Int. J. Miner. Process., 33(1991), No. 1-4, p. 235.
    [14]
    J. Xu, W. Sun, Q. Zhang, and Y.H. Hu, Research on depression mechanism of pyrite and pyrrhotite by new organic depressant RC, Min. Metall. Eng., 23(2003), No. 6, p. 27.
    [15]
    W. Sun, R.Q. Liu, X.F. Cao, and Y.H. Hu, Flotation separation of marmatite from pyrrhotite using DMPS as depressant, Trans. Nonferrous Met. Soc. China, 16(2006), p. 671.
    [16]
    S. Kelebek and C. Tukel, The effect of sodium metabisulfite and triethylenetetramine system on pentlandite-pyrrhotite separation, Int. J. Miner. Process., 57(1999), No. 2, p. 135.
    [17]
    D. Kim, Studies of the pyrrhotite depression mechanism with diethylenetriamine, Bull. Korean Chem. Soc., 19(1998), No. 8, p. 840.
    [18]
    M.F. Cai, Z. Dang, Y.W. Chen, and N. Belzile, The passivation of pyrrhotite by surface coating, Chemosphere, 61(2005), No. 5, p. 659.
    [19]
    Y.W. Chen, Y.R. Li, M.F. Cai, N. Belzile, and Z. Dang, Preventing oxidation of iron sulfide minerals by polyethylene polyamines, Miner. Eng., 19(2006), No. 1, p. 19.
    [20]
    Q. Liu, D. Wannas, and Y.J. Peng, Exploiting the dual functions of polymer depressants in fine particle flotation, Int. J. Miner. Process., 80(2006), No. 2-4, p. 244.
    [21]
    M. J. Pearse, An overview of the use of chemical reagents in mineral processing, Miner. Eng., 18(2005), No. 2, p. 139.
    [22]
    J.H. Chen, Y.Q. Li, and Y. Chen, Cu-S flotation separation via the combination of sodium humate and lime in a low pH medium, Miner. Eng., 24(2011), No. 1, p. 58.
    [23]
    C. Tukel and S. Kelebek, Modulation of xanthate action by sulphite ions in pyrrhotite deactivation/depression, Int. J. Miner. Process., 95(2010), No. 1-4, p. 47.
    [24]
    R.R. Castro, C.M.M. Silva, R.M. Nunes, P.L.R. Cunha, R.C.M. de Paula, J.P.A. Feitosa, V.C.C. Girão, M.M.L. Pompeu, J.A.D. Leite, and F.A.C. Rocha, Structural characteristics are crucial to the benefits of guar gum in experimental osteoarthritis, Carbohydr. Polym., 150(2016), p. 392.
    [25]
    F.S. Chen, H.F. Xu, S.L. Wang, and L. Zheng, A study on preparation of low viscosity guar gum and its strengthening performance, China Pulp Paper Ind., 33(2012), No. 2, p.13.
    [26]
    E. Frollini, W.F. Reed, M. Milas, and M. Rinaudo, Polyelectrolytes from polysaccharides:Selective oxidation of guar gum-a revisited reaction, Carbohydr. Polym., 27(1995), No. 2, p. 129.
    [27]
    H.H. Gong, M.Z. Liu, B. Zhang, D.P. Cui, C.M. Gao, B. Ni, and J.C. Chen, Synthesis of oxidized guar gumby drymethod and its application in reactive dye printing, Int. J. Biol. Macromol., 49(2011), No. 5, p. 1083.
    [28]
    P.G. Shortridge, P.J. Harris, D.J. Bradshaw, and L.K. Koopal, The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc, Int. J. Miner. Process., 59(2000), No. 3, p. 215.
    [29]
    K.L. Zhao, W. Yan, X.H. Wang, B. Hui, G.H. Gu, and H. Wang, The flotation separation of pyrite from pyrophyllite using oxidized guar gum as depressant, Int. J. Miner. Process., (2017), No. 161, p. 78.
    [30]
    E.T. Pecina, M. Rodríguez, P. Castillo, V. Diaz, and E. Orrantia, Effect of leptospirillum ferrooxidans on the flotation kinetics of sulphide ores, Miner. Eng., 22(2009), No. 5, p. 462.
    [31]
    S. Kelebek and B. Nanthakumar, Characterization of stockpile oxidation of pentlandite and pyrrhotite through kinetic analysis of their flotation, Int. J. Miner. Process., 84(2007), No. 1-4, p. 69.
    [32]
    J.D. Miller, J. Li, J.C. Davidtz, and F. Vos, A review of pyrrhotite flotation chemistry in the processing of PGM ores, Miner. Eng., 18(2005), No. 8, p. 855.
    [33]
    G. Fairthorne, J.S. Brinen, D. Fornasiero, D.R. Nagaraj, and J. Ralston, Spectroscopic and electrokinetic study of the adsorption of butyl ethoxycarbonyl thiourea on chalcopyrite, Int. J. Miner. Process., 54(1998), No. 3-4, p. 147.
    [34]
    W. Lin, J. Tian, J. Ren, P. Xu, Y. Dai, and S. Sun, Oxidation of aniline aerofloat in flotation wastewater by sodium hypochlorite solution, Environ. Sci. Pollut. Res., 23(2015), No.1, p. 785.
    [35]
    A.N. Buckley, G.A. Hope, G.K. Parker, J. Steyn, and R. Woods, Mechanism of mixed dithiophosphate and mercaptobenzothiazole collectors for Cu sulfide ore minerals, Miner. Eng., 109(2017), p. 80.
    [36]
    T. Zhang and W.Q. Qin, Floc flotation of jamesonite fines in aqueous suspensions induced by ammonium dibutyl dithiophosphate, J. Cent. South Univ., 22(2015), No. 4, p. 1232.
    [37]
    R.K. Rath, S. Subramanian, and T. Pradeep, Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants, J. Colloid Interface Sci., 229(2000), No. 1, p. 82.
    [38]
    M. Messali, H. Lgaz, R. Dassanayake, R. Salghi, S. Jodeh, N. Abidi, and O. Hamed, Guar gum as efficient non-toxic inhibitor of carbon steel corrosion in phosphoric acid medium:electrochemical, surface, DFT and MD simulations studies, J. Mol. Struct., 1145(2017), p. 43.
    [39]
    R.K. Rath, S. Subramanian, V. Sivanandam, and T. Pradeep, Studies on the interaction of guar gum with chalcopyrite, Can. Metall. Q., 40(1999), No. 1, p. 1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(407) PDF Downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return