Qian Zhao, Li-ming Yu, Yong-chang Liu, Yuan Huang, Zong-qing Ma,  and Hui-jun Li, Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp. 1156-1165. https://doi.org/10.1007/s12613-018-1667-7
Cite this article as:
Qian Zhao, Li-ming Yu, Yong-chang Liu, Yuan Huang, Zong-qing Ma,  and Hui-jun Li, Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp. 1156-1165. https://doi.org/10.1007/s12613-018-1667-7
Research Article

Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing

+ Author Affiliations
  • Corresponding authors:

    Li-ming Yu    E-mail: lmyu@tju.edu.cn

    Yong-chang Liu    E-mail: ycliu@tju.edu.cn

  • Received: 30 January 2018Revised: 5 March 2018Accepted: 6 March 2018
  • Three oxide-dispersion-strengthened (ODS) steels with compositions of Fe-14Cr-2W-0.2V-0.07Ta-0.3Y2O3 (wt%, so as the follows) (14Y), Fe-14Cr-2W-0.2V-0.07Ta-1Al-0.3Y2O3 (14YAl), and Fe-14Cr-2W-0.2V-0.07Ta-0.3Ti-0.3 Y2O3 (14YTi) were fabricated by hot pressing. Transmission electron microscopy (TEM) was used to characterize the microstructures and nanoparticles of these ODS steels. According to the TEM results, 14Y, 14YAl, and 14YTi ODS steels present similar bimodal structures containing both large and small grains. The addition of Al or Ti has no obvious effect on the microstructure of the steels. The spatial and size distribution of the nanoparticles was also analyzed. The results indicate that the average size of nanoparticles in the 14YTi ODS steel is smaller than that in the 14YAl ODS steel. Nanoparticles such as Y2O3, Y3Al5O12 and YAlO3, and Y2Ti2O7 were identified in the 14Y, 14YAl, and 14YTi ODS steels, respectively.
  • loading
  • [1]
    A. Kimura, Current status of reduced-activation ferritic/martensitic steels R&D for fusion energy, Mater. Trans., 46(2005), No. 3, p. 394.
    [2]
    J.P. Wharry, M.J. Swenson, and K.H. Yano, A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system:Current understanding and future directions, J. Nucl. Mater., 486(2017), p. 11.
    [3]
    L. Raman, K. Gothandapani, and B.S. Murty, Austenitic oxide dispersion strengthened steels:A review, Defence Sci. J., 66(2016), No. 4, p. 316.
    [4]
    K. Verhiest, A. Almazouzi, N. De Wispelaere, R. Petrov, and S. Claessens, Development of oxides dispersion strengthened steels for high temperature nuclear reactor applications, J. Nucl. Mater., 385(2009), No. 2, p. 308.
    [5]
    G.R. Odette, M.J. Alinger, and B.D. Wirth, Recent developments in irradiation-resistant steels, Annu. Rev. Mater. Res., 38(2008), p. 471.
    [6]
    G.R. Odette, Recent progress in developing and qualifying nanostructured ferritic alloys for advanced fission and fusion applications, JOM, 66(2014), No. 12, p. 2427.
    [7]
    T.K. Kim, S. Noh, S.H. Kang, J.P. Jin, H.J. Jin, K.L. Min, J. Jang, and C.K. Rhee, Current status and future prospective of advanced radiation resistant oxide dispersion strengthened steel (ARROS) development for nuclear reactor system applications, Nucl. Eng. Technol., 48(2016), No. 2, p. 572.
    [8]
    Q. Zhao, L.M. Yu, Y.C. Liu, Y. Huang, Q.Y. Guo, H.J. Li, and J.F. Wu, Evolution of Al-containing phases in ODS steel by hot pressing and annealing, Powder Technol., 311(2017), p. 449.
    [9]
    Q. Zhao, L.M. Yu, Y.C. Liu, Y. Huang, Z.Q. Ma, H.J. Li, and J.F. Wu, Microstructure and tensile properties of a 14Cr ODS ferritic steel, Mater. Sci. Eng. A, 680(2017), p. 347.
    [10]
    W. Li, T. Hao, R. Gao, X.P. Wang, T. Zhang, Q.F. Fang, and C.S. Liu, The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel, Powder Technol., 319(2017), p. 172.
    [11]
    P. Olier, M. Couvrat, C. Cayron, N. Lochet, and L. Chaffron, Incidence of mechanical alloying contamination on oxides and carbides formation in ODS ferritic steels, J. Nucl. Mater., 442(2013), No. 1-3, Suppl. 1, p. S106.
    [12]
    M. Magini, A. Iasonna, and F. Padella, Ball milling:An experimental support to the energy transfer evaluated by the collision model, Scripta Mater., 34(1996), No. 1, p. 172.
    [13]
    M. Nagini, R. Vijay, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Influence of the duration of high energy ball milling on the microstructure and mechanical properties of a 9Cr oxide dispersion strengthened ferritic-martensitic steel, Mater. Sci. Eng. A, 620(2017), p. 490.
    [14]
    C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), No. 1-2, p. 1.
    [15]
    I. Hilger, X. Boulnat, J. Hoffmann, C. Testani, F. Bergner, Y. De Carlan, F. Ferraro, and A. Ulbricht, Fabrication and characterization of oxide dispersion strengthened (ODS) 14Cr steels consolidated by means of hot isostatic pressing, hot extrusion and spark plasma sintering, J. Nucl. Mater., 472(2017), p. 206.
    [16]
    X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, and H.J. Li, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants:a review, J. Mater. Sci. Technol., 31(2015), No. 3, p. 235.
    [17]
    B. Mouawad, X. Boulnat, D. Fabrègue, M. Perez, and Y. de Carlan, Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy, J. Nucl. Mater., 465(2015), p. 54.
    [18]
    D.T. Hoelzer, K.A. Unocic, M.A. Sokolov, and T.S. Byun, Influence of processing on the microstructure and mechanical properties of 14YWT, J. Nucl. Mater., 471(2016), p. 251.
    [19]
    B. van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau, and G. LeMarois, The development of EUROFER reduced activation steel, Fusion Eng. Des., 69(2003), No. 1-4, p. 197.
    [20]
    Z. Oksiuta, M. Lewandowska, P. Unifantowicz, N. Baluc, and K.J. Kurzydlowski, Influence of Y2O3 and Fe2Y additions on the formation of nano-scale oxide particles and the mechanical properties of an ODS RAF steel, Fusion Eng. Des., 86(2011), No. 9-11, p. 2417.
    [21]
    A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and T.F. Abe, Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems, J. Nucl. Mater., 417(2011), No. 1-3, p. 176.
    [22]
    R. Gao, L.L. Xia, T. Zhang, X.P. Wang, Q.F. Fang, and C.S. Liu, Oxidation resistance in LBE and air and tensile properties of ODS ferritic steels containing Al/Zr elements, J. Nucl. Mater., 455(2014), No. 1-3, p. 407.
    [23]
    C. Capdevila, G. Pimentel, M.M. Aranda, R. Rementeria, K. Dawson, E. Urones-Garrote, G.J. Tatlock, and M.K. Miller, Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy, JOM, 67(2015), No. 10, p. 2208.
    [24]
    P. He, M. Klimenkov, R. Lindau, and A. Möslang, Characterization of precipitates in nano structured 14% Cr ODS alloys for fusion application, J. Nucl. Mater., 428(2012), No. 1-3, p. 131.
    [25]
    J. Chao, R. Rementeria, M. Aranda, C. Capdevila, and J. Gonzalezcarrasco, Comparison of ductile-to-brittle transition behavior in two similar ferritic oxide dispersion strengthened alloys, Materials, 9(2016), No. 8, p. 637.
    [26]
    J.M. Torralba, L. Fuentes-Pacheco, N. García-Rodríguez, and M. Campos, Development of high performance powder metallurgy steels by high-energy milling, Adv. Powder Technol., 24(2013), No. 5, p. 813.
    [27]
    T. Liu, L.B. Wang, C.X. Wang, and H.L. Shen, Effect of Al content on the oxidation behavior of Y2Ti2O7-dispersed Fe-14Cr ferritic alloys, Corros. Sci., 104(2016), p. 17.
    [28]
    J.S. Lee, C.H. Jang, I.S. Kim, and A. Kimura, Embrittlement and hardening during thermal aging of high Cr oxide dispersion strengthened alloys, J. Nucl. Mater., 367-370(2007), p. 229.
    [29]
    X.Y. Yuan, Z. Yang, X. Li, and L.Q. Chen, Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1555.
    [30]
    S.F. Li, Z.J. Zhou, P.H. Wang, H.Y. Sun, M. Wang, and G.M. Zhang, Long-term thermal-aging stability of a 16Cr-oxide dispersion strengthened ferritic steel at 973 K, Mater. Des., 90(2016), p. 318.
    [31]
    R. Chinnappan, Thermodynamic stability of oxide phases of Fe-Cr based ODS steels via quantum mechanical calculations, Calphad, 45(2014), p. 188.
    [32]
    X. Zhao, L.C. Guo, L. Zhang, T.T. Jia, C.G. Chen, J.J. Hao, H.P. Shao, Z.M. Guo, J. Luo, and J.B. Sun, Influence of nano-Al2O3-reinforced oxide-dispersion-strengthened Cu on the mechanical and tribological properties of Cu-based composites, Int. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1444.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(563) PDF Downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return