Cite this article as: |
Hong-yu Zhang, Chong Li, Zong-qing Ma, Li-ming Yu, Hui-jun Li, and Yong-chang Liu, Morphology and quantitative analysis of O phase during heat treatment of hot-deformed Ti2AlNb-based alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 10, pp. 1191-1200. https://doi.org/10.1007/s12613-018-1671-y |
Chong Li E-mail: lichongme@tju.edu.cn
Yong-chang Liu E-mail: ycliu@tju.edu.cn
[1] |
C.J. Boehlert, The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy, J. Phase Equilib., 20(1999), No. 2, p. 101.
|
[2] |
J. Kumpfert, Intermetallic alloys based on orthorhombic titanium aluminide, Adv. Eng. Mater., 3(2001), No. 11, p. 851.
|
[3] |
S. Emura, A. Araoka, and M. Hagiwara, B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy, Scripta Mater., 48(2003), No. 5, p. 629.
|
[4] |
J. Wu, L. Xu, Z.G. Lu, B. Lu, Y.Y. Cui, and R. Yang, Microstructure design and heat response of powder metallurgy Ti2AlNb alloys, J. Mater. Sci. Technol., 31(2015), No. 12, p. 1251.
|
[5] |
Y.Y. Zong, B. Shao, Y.T. Tian, and D.B.Shan, A study of the sharp yield point of a Ti-22Al-25Nb alloy, J. Alloys Compd., 701(2017), p. 727.
|
[6] |
B. Shao, Y.Y. Zong, D.S. Wen, Y.T. Tian, and D.B. Shan, Investigation of the phase transformations in Ti-22Al-25Nb alloy, Mater. Charact., 114(2016), p. 75.
|
[7] |
X. Feng, J.K. Qiu, Y.J. Ma, J.F. Lei, Y.Y. Cui, X.H. Wu, and R. Yang, Influence of processing conditions on microstructure and mechanical properties of large thin-wall centrifugal Ti-6Al-4V casting, J. Mater. Sci. Technol., 32(2016), No. 4, p. 362.
|
[8] |
Y.C. Liu, F. Lan, G.C. Yang, and Y.H. Zhou, Microstructural evolution of rapidly solidified Ti-Al peritectic alloy, J. Cryst.Growth, 271(2004), No. 1-2, p. 313.
|
[9] |
J. Małecka, Investigation of the oxidation behavior of orthorhombic Ti2AlNb Alloy, J. Mater. Eng. Perform., 24(2015), No. 5, p. 1834.
|
[10] |
F.A. Sadi and C. Servant, On the B2→ O phase transformation in Ti-Al-Nb alloys, Mater. Sci. Eng. A, 346(2003), No. 1, p. 19.
|
[11] |
L. Germann, D. Banerjee, J.Y. Guedou, and J.L. Strudel, Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide, Intermetallics, 13(2005), No. 9, p. 920.
|
[12] |
T.K. Nandy and D. Banerjee, Creep of the orthorhombic phase based on the intermetallic Ti2AlNb, Intermetallics, 8(2000), No. 8, p. 915.
|
[13] |
C.J. Boehlert, Microstructure, creep, and tensile behavior of a Ti-12Al-38Nb (at.%) beta+orthorhombic alloy, Mater. Sci. Eng. A, 267(1999), No. 1, p. 82.
|
[14] |
C.J. Cowen and C.J. Boehlert, Microstructure, creep, and tensile behavior of a Ti-21Al-29Nb (at.%) orthorhombic+B2 alloy, Intermetallics, 14(2006), No. 4, p. 412.
|
[15] |
T.K. Nandy and D. Banerjee, Deformation mechanisms in the O phase, Intermetallics, 8(2000), No. 9-11, p. 1269.
|
[16] |
S.J. Yang, S.W. Nam, and M. Hagiwara, Phase identification and effect of W on the microstructure and micro-hardness of Ti2AlNb-based intermetallic alloys, J. Alloys Compd., 350(2003), No. 1, p. 280.
|
[17] |
C.J. Boehlert, Part Ⅲ. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys, Metall. Mater. Trans. A, 32(2001), No. 8, p. 1977.
|
[18] |
T.B. Zhang, G. Huang, R. Hu, and J.S. Li, Microstructural stability of long term aging treated Ti-22Al-26Nb-1Zr orthorhombic titanium aluminide, Trans. Nonferrous Met. Soc. China, 25(2015), No. 8, p. 2549.
|
[19] |
S.R. Dey, S. Suwas, J.J. Fundenberger, J.X. Zou, T. Grosdidier, and R.K. Ray, Evolution of hot rolling texture in β (B2)-phase of a two-phase (O+B2) titanium-aluminide alloy, Mater. Sci. Eng. A, 483(2008), No. 1, p. 551.
|
[20] |
H. Zhang, H.J. Li, Q.Y. Guo, Y.C. Liu, and L.M. Yu, Hot deformation behavior of Ti-22Al-25Nb alloy by processing maps and kinetic analysis, J. Mater. Res., 31(2016), No. 12, p. 1764.
|
[21] |
C. Qin, Z.K. Yao, Y.Q. Ning, Z.F. Shi, and H.Z. Guo, Hot deformation behavior of TC11/Ti-22Al-25Nb dual-alloy in isothermal compression, Trans. Nonferrous Met. Soc. China, 25(2015), No. 7, p. 2195.
|
[22] |
X. Ma, W.D. Zeng, B. Xu, Y. Sun, C. Xue, and Y.F. Han, Characterization of the hot deformation behavior of a Ti-22Al-25Nb alloy using processing maps based on the Murty criterion, Intermetallics, 20(2012), No. 1, p. 1.
|
[23] |
J.L. Zhang, H.Z. Guo, and H.Q. Liang, Dynamic recrystallization behavior of Ti22Al25Nb alloy during hot isothermal deformation, High Temp. Mater. Processes, 35(2016), No. 10, p. 1021.
|
[24] |
J.B. Jia, K.F. Zhang, and Z. Lu, Dynamic globularization kinetics of a powder metallurgy Ti-22Al-25Nb alloy with initial lamellar microstructure during hot compression, J. Alloys Compd., 617(2014), p. 429.
|
[25] |
J.B. Jia, K.F. Zhang, and Z. Lu, Dynamic recrystallization kinetics of a powder metallurgy Ti-22Al-25Nb alloy during hot compression, Mater. Sci. Eng. A, 607(2014), p. 630.
|
[26] |
C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, Part I. The microstructural evolution in Ti-Al-Nb O + Bcc orthorhombic alloys, Metall. Mater. Trans. A, 30(1999), No. 9, p. 2305.
|
[27] |
S.L. Semiatin and P.R. Smith, Microstructural evolution during rolling of Ti-22Al-23Nb sheet, Mater. Sci. Eng. A, 202(1995), No. 1-2, p. 26.
|
[28] |
K. Muraleedharan, D. Banerjee, S. Banerjee, and S. Lele, The α2-to-O transformation in Ti-Al-Nb alloys, Phil Mag. A, 71(1995), No. 5, p. 1011.
|
[29] |
X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, and X.Q. Wu, Microstructural evolution and mechanical properties of linear friction welded Ti2AlNb joint during solution and aging treatment, Mater. Sci. Eng. A, 668(2016), p. 125.
|
[30] |
K. Muraleedharan, T.K. Nandy, and D. Banerjee, Phase stability and ordering behaviour of the O phase in Ti-Al-Nb alloys, Intermetallics, 3(1995), No. 3, p. 187.
|
[31] |
K. Muraleedharan, A.K. Gogia, T.K. Nandy, D. Banerjee, and S. Lele, Transformations in a Ti-24Al-15Nb alloy:Part I. Phase equilibria and microstructure, Metall. Mater. Trans. A, 23(1992), No. 2, p. 401.
|
[32] |
N. Stefansson and S.L. Semiatin, Mechanisms of globularization of Ti-6Al-4V during static heat treatment, Metall. Mater. Trans. A, 34(2003), No. 3, p. 691.
|
[33] |
Y.C. Liu, G.C. Yang, and Y.H. Zhou, High-velocity banding structure in the laser-resolidified hypoperitectic Ti47Al53 alloy, J. Cryst. Growth, 240(2002), No. 3, p. 603.
|
[34] |
C. Xue, W.D. Zeng, W. Wang, X.B. Liang, and J.W. Zhang, Coarsening behavior of lamellar orthorhombic phase and its effect on tensile properties for the Ti-22Al-25Nb alloy, Mater. Sci. Eng. A, 611(2014), p. 320.
|
[35] |
W. Wang, W.D. Zeng, C. Xue, X.B. Liang, and J.W. Zhang, Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti-22Al-25Nb (at.%) orthorhombic alloy, Intermetallics, 45(2014), No. 2, p. 29.
|
[36] |
H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2(1969), No. 2, p. 65.
|
[37] |
T. Seshacharyulu and B. Dutta, Influence of prior deformation rate on the mechanism of β→α+β transformation in Ti-6Al-4V, Scripta Mater., 46(2002), No. 9, p. 673.
|
[38] |
J.D.C. Teixeira, B. Appolaire, E. Aeby-Gautier, S. Denis, and F. Bruneseaux, Modeling of the effect of the β phase deformation on the α phase precipitation in near-β titanium alloys, Acta Mater., 54(2006), No. 16, p. 4261.
|
[39] |
D. Banerjee, The intermetallic Ti2AlNb, Prog. Mater. Sci., 42(1997), No. 1-4, p. 135.
|
[40] |
M.C. Li, Q. Cai, Y.C. Liu, Z.Q. Ma, Z.M. Wang, Y. Huang, and J.X. Yu, Dual structure O+B2 for enhancement of hardness in furnace-cooled Ti2AlNb-based alloys by powder metallurgy, Adv. Powder Technol., 28(2017), p. 1719.
|