Cite this article as: |
Qian-yu Sun, Wan-zhong Yin, Dong Li, Ya-feng Fu, Ji-wei Xue, and Jin Yao, Improving the sulfidation-flotation of fine cuprite by hydrophobic flocculation pretreatment, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp. 1256-1262. https://doi.org/10.1007/s12613-018-1678-4 |
Wan-zhong Yin E-mail: yinwanzhong@mail.neu.edu.cn
[1] |
B. Lanz, T.F. Rutherford, and J.E. Tilton, Subglobal climate agreements and energy-intensive activities:An evaluation of carbon leakage in the copper industry, World Economy, 36(2013), No. 3, p. 254.
|
[2] |
M.C. Roberts, Metal use and the world economy, Resources Policy, 22(1996), No. 3, p. 183.
|
[3] |
J.W. Han, J. Xiao, W.Q. Qing, D.X. Chen, and W. Liu, Copper recovery from Yulong complex copper oxide ore by flotation and magnetic separation, JOM, 69(2017), No. 9, p. 1563.
|
[4] |
D.D Wu, W.H. Ma, Y.B. Mao, J.S. Deng, and S.M. Wen, Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator, Sci. Rep., 7(2017), art. No. 2086.
|
[5] |
Q.C. Feng, W.J. Zhao, S.M. Wen, and Q.B. Cao, Copper sulfide species formed on malachite surfaces in relation to flotation, J. Ind. Eng. Chem., 48(2017), p. 125.
|
[6] |
Q.C. Feng, S.M. Wen, W.J. Zhao, J.S. Deng, and Y.J. Xian, Adsorption of sulfide ions on cerussite surfaces and implications for flotation, Appl. Surf. Sci., 360(2016), Part A, p. 365.
|
[7] |
Q.C. Feng, S.M. Wen, W.J. Zhao, W.J. Zhao, J. Liu, and D. Liu, Effect of pH on surface characteristics and flotation of sulfidized cerussite, Physicochem. Prob. Miner. Process., 52(2016), No. 2, p. 676.
|
[8] |
Q.C. Feng, W.J. Zhao, and S.M. Wen, Ammonia modification for enhancing adsorption of sulfide species onto malachite surfaces and implications for flotation, J. Alloys Compd., 744(2018), p. 301.
|
[9] |
Q.C. Feng, W.J. Zhao, and S.M. Wen, Surface modification of malachite with ethanediamine and its effect on sulfidization flotation, Appl. Surf. Sci., 436(2018), p. 823.
|
[10] |
Q.C. Feng, S.M. Wen, W.J. Zhao, Q.B. Cao, and C. Lü, A novel method for improving cerussite sulfidization, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 609.
|
[11] |
Q.C. Feng, S.M. Wen, J.S. Deng, and W.J. Zhao, Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride, Appl. Surf. Sci., 425(2017), p. 8.
|
[12] |
Q.C. Feng, S.M. Wen, W.J. Zhao, Y.J. Wang, and C.F. Cui, Contribution of chloride ions to the sulfidization flotation of cerussite, Miner. Eng., 83(2015), p. 128.
|
[13] |
L.J. Warren, Shear-flocculation of ultrafine scheelite in sodium oleate solutions, J. Colloid Interface Sci., 50(1975), No. 2, p. 307.
|
[14] |
Q. Wang and K. Heiskanen, Selective hydrophobic flocculation in apatite-hematite system by sodium oleate, Miner. Eng., 5(1992), No. 3-5, p. 493.
|
[15] |
W.Z. Yin, X.S. Yang, D.P. Zhou, Y.J. Li, and Z.F. Lu, Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate, Trans. Nonferrous Met. Soc. China, 21(2011), No. 3, p. 652.
|
[16] |
W. Chen, Q.M. Feng, G.F. Zhang, L.F. Li, and S.Z. Jin, Effect of energy input on flocculation process and flotation performance of fine scheelite using sodium oleate, Miner. Eng., 112(2017), p. 27.
|
[17] |
S.X. Song, A. Lopez-Valdivieso, and Y.Q. Ding, Effects of nonpolar oil on hydrophobic flocculation of hematite and rhodochrosite fines, Powder Technol., 101(1999), No. 1, p. 73.
|
[18] |
S.C. Lu, Y.Q. Ding, and J.Y. Guo, Kinetics of fine particle aggregation in turbulence, Adv. Colloid Interface Sci., 78(1998), No. 3, p. 197.
|
[19] |
A. Ozkan, H. Ucbeyiay, and S. Aydogan, Shear flocculation of celestite with anionic surfactans and effects of some inorganic dispersants, Colloids Surf. A, 281(2006), No. 1-3, p. 92.
|
[20] |
W.Z. Yin, Y.F. Fu, J. Yao, B. Yang, S.H Cao, and Q.Y. Sun, Study on the dispersion mechanism of citric acid on chlorite in hematite reverse flotation system, Minerals, 7(2017), No. 11, p. 221.
|
[21] |
W.Z. Yin, J.W. Xue, D. Li, Q.Y. Sun, J. Yao, and S. Hang, Flotation of heavily oxidized pyrite in the presence of fine digenite particles, Miner Eng., 115(2018), p. 142.
|
[22] |
W.Z. Yin and J.Z. Wang, Effects of particle size and particle interactions on scheelite flotation, Trans. Nonferrous Met. Soc. China, 24(2014), No. 11, p. 3682.
|