Qing-dong Qin, Jin-bo Qu, Yong-e Hu, Yu-jiao Wu,  and Xiang-dong Su, Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp. 1286-1293. https://doi.org/10.1007/s12613-018-1681-9
Cite this article as:
Qing-dong Qin, Jin-bo Qu, Yong-e Hu, Yu-jiao Wu,  and Xiang-dong Su, Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 11, pp. 1286-1293. https://doi.org/10.1007/s12613-018-1681-9
Research Article

Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy

+ Author Affiliations
  • Corresponding author:

    Qing-dong Qin    E-mail: qin8370@126.com

  • Received: 22 February 2018Revised: 6 April 2018Accepted: 13 April 2018
  • CoCrCuFeNi-TiO was prepared by arc melting of the pure elements and Ti2CO powder under an Ar atmosphere. Both CoCrCuFeNi and CoCrCuFeNi-TiO alloys are composed of a face-centered cubic (fcc) solid solution, whereas the alloys of CoCrCuFeNi-TiO are basically composed of an fcc solid solution and TiO crystals. The microstructures of CoCrCuFeNi-TiO are identified as dendrite and interdendrite structures such as CoCrCuFeNi. The morphology of TiO is identified as an equiaxed crystal with a small amount of added Ti2CO. By increasing the amount of Ti2CO added, the TiO content was dramatically increased and part of the equiaxed crystals changed to a dendrite structure. A test of the oxidation resistance demonstrates that the oxidation resistance of CoCrCuFeNi-TiO is better than that of CoCrCuFeNi. However, as the TiO content increases further, a corresponding decrease is observed in the oxidation resistance.
  • loading
  • [1]
    D.C. Ma, M.J. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, and D. Raabe, Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys, Acta Mater., 98(2015), p. 288.
    [2]
    H.L, Wang, T.X. Gao, J.Z. Niu, P.J. Shi, J. Xu, and Y. Wang, Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 77.
    [3]
    T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang, Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 549.
    [4]
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.
    [5]
    R.X. Li, P.K. Liaw, and Y. Zhang, Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides, Mater. Sci. Eng. A, 707(2017), p. 668.
    [6]
    S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, and Krishanu Biswas, Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy:Microstructure and mechanical properties, Mater. Sci. Eng. A, 679(2017), p. 299.
    [7]
    W.R. Zhang, P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater., 61(2018), No. 1, p. 2.
    [8]
    R. Raghavan, C. Kirchlechner, B.N. Jaya, M. Feuerbacher, and G. Dehm, Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy, Scripta Mater., 129(2017), p. 52.
    [9]
    M.C. Gao, W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys Fundamentals and Applications, Springer International Publishing, Switzerland, 2016, p. 32.
    [10]
    Z.G. Wu, Y.F. Gao, and H.B. Bei, Thermal activation mechanisms and labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys, Acta Mater., 120(2016), p. 108.
    [11]
    B. Vishwanadh, N. Sarkar, S. Gangil, S. Singh, R. Tewari, G.K. Dey, and S. Banerjee, Synthesis and microstructural characterization of a novel multicomponent equiatomic ZrNbAlTiV high entropy alloy, Scripta Mater., 124(2016), p. 146.
    [12]
    K.G. Pradeep, C.C. Tasan, M.J. Yao, Y. Deng, H. Springer, and D. Raabe, Non-equiatomic high entropy alloys:Approach towards rapid alloy screening and property-oriented design, Mater. Sci. Eng. A, 648(2015), p. 183.
    [13]
    J.B. Cheng, X.B. Liang, and B.S. Xu, Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings, Surf. Coat. Technol., 240(2014), p. 184.
    [14]
    S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Mater., 59(2011), No. 1, p. 182.
    [15]
    B.R. Braeckman and D. Depla, Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films, J. Alloy Compd., 646(2015), p. 810.
    [16]
    J.B. Cheng, D. Liu, X.B. Liang, and Y.X. Chen, Evolution of microstructure and mechanical properties of in situ synthesized TiC-TiB2/CoCrCuFeNi high entropy alloy coatings, Surf. Coat. Technol., 281(2015), p. 109.
    [17]
    B.R. Braeckman, F. Misják, G. Radnóczi, and D. Depla, The influence of Ge and in addition on the phase formation of CoCrCuFeNi high-entropy alloy thin films, Thin Solid Films, 616(2016), p. 703.
    [18]
    Y.J. Hsu, W.C. Chiang, and J.K. Wu, Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution, Mater. Chem. Phys., 92(2005), No. 1, p. 112.
    [19]
    W.L. Wang, L. Hu, S.B. Luo, L.J. Meng, D.L. Geng, and B. Wei, Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy, Intermetallics, 77(2016), p. 41.
    [20]
    Ł. Rogal, Semi-solid processing of the CoCrCuFeNi high entropy alloy, Mater. Des., 119(2017), p. 406.
    [21]
    Q.D. Qin, B.W. Huang, and W. Li, Microstructure and wear resistance of in situ porous TiO/Cu composites, Met. Mater. Int., 22(2016), No. 4, p. 630.
    [22]
    Q.D. Qin, B.W. Huang, W. Li, and F. Shao, Microstructure development of in situ porous TiO/Cu composites, J. Alloys Compd., 672(2016), p. 590.
    [23]
    Q.D. Qin, B.W. Huang, W. Li, and Z.Y. Zeng, Preparation and wear resistance of aluminum composites reinforced with in Situ formed TiO/Al2O3, J. Mater. Eng. Perform., 25(2016), No. 5, p. 2029.
    [24]
    J. Blazevska-Gilev, V. Jandová, J. Kupčik, Z. Bastl, J. Šubrt, P. Bezdička, and J. Pola, Laser hydrothermal reductive ablation of titanium monoxide:hydrated TiO particles with modified Ti/O surface, J. Solid State Chem., 197(2013), p. 337.
    [25]
    A.A. Valeeva, G. Tang, A.I. Gusev, and A.A. Rempel, Observation of structural vacancies in titanium monoxide using transmission electron microscopy, Phys. Solid State, 45(2003), No. 1, p. 87.
    [26]
    Q.D. Qin, Y.G. Zhao, P.J. Cong, Y.H. Liang, and W. Zhou, Functionally graded Mg2Si/Al composite produced by an electric arc remelting process, J. Alloys Compd., 420(2006), No. 1-2, p. 121.
    [27]
    S.Q. Jiao and H.M, Zhu, Electrolysis of Ti2CO solid solution prepared by TiC and TiO2, J. Alloys Compd., 438(2007), No. 1-2, p. 243.
    [28]
    X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics, 15(2007), No. 3, p. 357.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(471) PDF Downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return