Lei Cao, Ya-long Liao, Gong-chu Shi, Yu Zhang, and Mu-yuan Guo, Leaching behavior of zinc and copper from zinc refinery residue and filtration performance of pulp under the hydrothermal process, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp.21-32. https://dx.doi.org/10.1007/s12613-019-1706-z
Cite this article as: Lei Cao, Ya-long Liao, Gong-chu Shi, Yu Zhang, and Mu-yuan Guo, Leaching behavior of zinc and copper from zinc refinery residue and filtration performance of pulp under the hydrothermal process, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp.21-32. https://dx.doi.org/10.1007/s12613-019-1706-z
Research Article

Leaching behavior of zinc and copper from zinc refinery residue and filtration performance of pulp under the hydrothermal process

Author Affilications
Funds: 

This work was financially supported by the National Natural Science Foundation of China (Nos. 21566017 and 21266011) and the National Innovation and Entrepreneurship Training Program for College Students (No. 201710674161). The authors acknowledge the support on the analysis of the samples by National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences.

  • This study aims to investigate the leaching behavior and filtration performance of zinc refinery residue under hydrothermal conditions. The relationships between the structure and morphology of silicon in the leaching residue and the pulp filtration performance were explored by determining the pulp filtration speed, analyzing quantitatively the silicon content in the leachate, and characterizing the leaching residue structure. The results show that hydrothermal leaching induces the coagulation-hydrolysis of the silicon in solution, consequently altering the microstructure of the leaching residue, and that silicon oxygen tetrahedra ([SiO4]4-) form the main skeleton structure of the residue. The results obtained also show that the leaching rates of zinc and copper are 98.1% and 98.7%, respectively, and that the filtration speed is 526.32 L/(m2·h) under the conditions of sulfuric acid concentration of 140 g/L, leaching temperature of 160℃, leaching time of 3.0 h, oxygen partial pressure of 0.75 MPa, stirring speed of 600 r/min, and a liquid-to-solid ratio of 10 mL/g.
  • R.R. Xu, W.Q. Peng, and Q.S. He, J.H. Yu, J.S. Chen, B.L. Su, S.L. Qiu, and W.F. Yan, Molecular Sieve and Porous Material Chemistry, 2nd ed., Science Press, Beijing, 2015, p. 198.
    C.X. Li, C. Wei, G. Fang, X.L. Yang, H.S. Xu, Z.G. Deng, M.T. Li, and X.B. Li, Pressure acid leaching of high silicon zinc oxide ore, Chin. J. Nonferrous Met., 19(2009), No. 9, p. 1678.
    C.X. Li, H.S. Xu, Z.G. Deng, X.B. Li, M. T. Li, and C. Wei, Pressure leaching of zinc silicate ore in sulfuric acid medium, Trans. Nonferrous Met. Soc. China, 20(2010), No. 5, p. 918.
    H.S. Xu, C. Wei, C.X. Li, G. Fang, Z.G. Deng, M.T. Li, and X.B. Li, Sulfuric acid leaching of zinc silicate ore under pressure, Hydrometallurgy, 105(2010), No. 1-2, p. 186.
    S.M. He, J.K. Wang, and J.R. Peng, Behavior of silicon in pressure leaching of high silica zinc oxide ores in sulfuric acid medium, Nonferrous Met. Extr. Metall., (2010), No. 6, p. 9.
    H.L. Yang, C.X. Li, C. Wei, M.T. Li, X.B. Li, Z.G. Deng, and G. Fang, Research on high temperature acid conversion of pure hemimorphite under pressure, J. Kunming Univ. Sci. Technol. Nat. Sci. Ed., 40(2015), No. 5, p.10.
    F.R. Huang, Y.L. Liao, J. Zhou, Y.Y. Wang, and H. Li, Selective recovery of valuable metals from nickel converter slag at elevated temperature with sulfuric acid solution, Sep. Purif. Technol., 156(2015), No. 2, p. 572.
    F.P. Liu, Z.H. Liu, Y.H. Li, Z.Y. Liu, and Q.H. Li, Leaching mechanism of zinc powder replacement residue containing gallium and germanium by high pressure acid leaching, Chin. J. Nonferrous Met., 24(2014), No. 4, p. 1091.
    F.P. Liu, Z.H. Liu, Y.H. Li, Z.Y. Liu, Q.H. Li, and D.M. Wen, Sulfuric leaching process of zinc powder replacement residue containing gallum and germanium, Chin. J. Nonferrous Met., 26(2016), No. 4, p. 908.
    R.L. Frost and Y. Xi, Vibrational spectroscopic study of the mineral creaseyite Cu2Pb2(Fe,Al)2(Si5O17)·6H2O-A zeolite mineral, Spectrochim. Acta Part A, 94(2012), p. 6.
    E.A. Abdel-Galil, W.M. El-Kenany, and L.M.S. Hussin, Preparation of nano-structured hydrated antimony oxide using a sol-gel process. Characterization and applications for sorption of La3+ and Sm3+ from aqueous solutions, Russ. J. Appl. Chem., 88(2015), No. 8, p. 1351.
    J. He, M.T. Tang, and J.L. Lu, Concentrating Ge in zinc hydrometallurgical process with hot acid leaching-halotrichite method, J. Cent. South Univ. Technol., 10(2003), No. 4, p. 307.
    D.Q. Liang, J.K. Wang, and Y.H. Wang, Difference in dissolution between germanium and zinc during the oxidative pressure leaching of sphalerite, Hydrometallurgy, 95(2009), No. 1-2, p. 5.
    S.M. He, J.K. Wang, J.L. Wang, Y. Li, L. Gan, and H.H. Xiong, Thermodynamic analysis and experiment on pressure leaching of zinc silicate with sulfuric acid, Chin. J. Process Eng., 14(2014), No. 6, p. 930.
    A. Rabenau, The role of hydrothermal synthesis in preparative chemistry, Angew. Chem. Int. Ed., 24(1985), No. 12, p. 1026.
    H.S. Xu, Basic Theory and Technology of High Silicon Zinc Oxide High Temperature Acid Conversion and Precipitation[Dissertation], Kunming University of Science and Technology, Kunming, 2014, p. 80.
    Y. Yang and Q. Lu, Study of boulangerite's crystal structure and composition, Geolog. Sci. Technol. Inform., 16(1997), No. 4, p. 45.
    A.L. Chen, Z.W. Zhao, X.J. Jia, S. Long, G.S. Huo, and X.Y. Chen, Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore, Hydrometallurgy, 97(2009), No. 3-4, p. 228.
    R. Ryoo, S.H. Joo, and M.K. Ji, Energetically favored formation of MCM-48 from cationic-neutral surfactant mixtures, J. Phys. Chem. B, 103(1999), No. 35, p. 7435.
    X.H. Li, K. Wan, Q.B. Liu, J.H. Piao, Y.Y. Zheng, and Z.X. Liang, Nitrogen-doped ordered mesoporous carbon:Effect of carbon precursor on oxygen reduction reactions, Chin. J. Catal., 37(2016), No. 9, p. 1562.
    H.S. Chen, Z.Y. Sun, and J.C. Shao, Investigation on FT-IR spectroscopy for eight different sources of SiO2, Bull. Chin. Ceram. Soc., 30(2011), No. 4, p. 934.
    A. Agarwal and M. Tomozawa, Surface and bulk structural relaxation kinetics of silica glass, J. Non-Cryst. Solids, 209(1997), No. 3, p. 264.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359(1992), No. 6397, p. 710.
    H.I. Meléndez-Ortiz, Y. Perera-Mercado, J.A. Mercado-Silva, Y. Olivares-Maldonado, G. Castruita, and L.A. García-Cerda, Functionalization with amine-containing organosilane of mesoporous silica MCM-41 and MCM-48 obtained at room temperature, Ceram. Int., 40(2014), No. 7, p. 9701.
    M. Anbia and S. Salehi, Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3, Dyes Pigm., 94(2012), No. 1, p. 1.
  • Related Articles

    [1]Jashandeep Singh, Ashok Kumar. Investigation of structural, morphological and electrochemical properties of mesoporous La2CuCoO6 rods fabricated by facile hydrothermal route [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(7): 987-995. DOI: 10.1007/s12613-020-2011-6
    [2]Hui-gang Wang, Yang Li, Jian-ming Gao, Mei Zhang, Min Guo. A novel hydrothermal method for zinc extraction and separation from zinc ferrite and electric arc furnace dust [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(2): 146-155. DOI: 10.1007/s12613-016-1221-4
    [3]U. K. N. Din, T. H. T. Aziz, M. M. Salleh, A. A. Umar. Synthesis of crystalline perovskite-structured SrTiO3 nanoparticles using an alkali hydrothermal process [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(1): 109-115. DOI: 10.1007/s12613-016-1217-0
    [4]Yi-chao Peng, Hao-hao Xu, Mai-cang Zhang. Effects of simulated on-fire processing conditions on the microstructure and mechanical performance of Q345R steel [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(1): 49-56. DOI: 10.1007/s12613-016-1210-7
    [5]Le Wang, Wen-ning Mu, Hong-tao Shen, Shao-ming Liu, Yu-chun Zhai. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(5): 460-466. DOI: 10.1007/s12613-015-1094-y
    [6]Chao Yuan, Ji-heng Li, Wen-lan Zhang, Xiao-qian Bao, Xue-xu Gao. Microstructure and magnetostrictive performance of NbC-doped <100> oriented Fe-Ga alloys [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(1): 52-58. DOI: 10.1007/s12613-015-1043-9
    [7]Yan Zhao, Jian-ming Gao, Yi Yue, Ben Peng, Zai-qing Que, Min Guo, Mei Zhang. Extraction and separation of nickel and cobalt from saprolite laterite ore by microwave-assisted hydrothermal leaching and chemical deposition [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(7): 612-619. DOI: 10.1007/s12613-013-0774-8
    [8]Yu-Chu Peng, Chao-Lung Hwang. Development of high performance and high strength heavy concrete for radiation shielding structures [J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(1): 89-93. DOI: 10.1007/s12613-011-0405-1
    [9]Xiao-ming Liu, Heng-hu Sun, Xiang-peng Feng, Na Zhang. Relationship between the microstructure and reaction performance of aluminosilicate [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(1): 108-115. DOI: 10.1007/s12613-010-0119-9
    [10]Shuling Shen, Wei Wu, Kai Guo, Jianfeng Chen. Low-cost preparation of mesoporous silica with high pore volume [J]. International Journal of Minerals, Metallurgy and Materials, 2007, 14(4): 369-372. DOI: 10.1016/S1005-8850(07)60073-5
  • Cited by

    Periodical cited type(8)

    1. Sepideh Javanshir, Aida Arasteh, Mohsen Mohebbi, et al. Leaching behavior of Cu, Zn, Fe and Pb from polymetallic tailings. Separation Science and Technology, 2024. DOI:10.1080/01496395.2024.2387270
    2. Y.-Y. Shen, X.-S. Zhao, F.-J. Zhang, et al. Existent state and removal rate of silver in lead-silver slag during the melt-vaporization process. Journal of Mining and Metallurgy, Section B: Metallurgy, 2023, 59(2): 349. DOI:10.2298/JMMB230519030S
    3. Wei Weng, Wenze Zhang, Hongfu Lin, et al. Fixing sulfur dioxide by feeding calcine oxide into the rotary volatilization kiln in zinc smelting plant. Environmental Science and Pollution Research, 2023, 30(15): 43768. DOI:10.1007/s11356-023-25164-9
    4. TianTian Zhen, Huan Luo, Lang Liu, et al. Selective Recovery of Valuable Metals (Se, Te, Cu) from the Selenium Distillation Residue by Sulfuric Acid Oxidative Leaching. Journal of Sustainable Metallurgy, 2022, 8(3): 1191. DOI:10.1007/s40831-022-00547-3
    5. Rashid Nadirov, Galymzhan Karamyrzayev. Enhancing Synthetic Zinc Ferrite Hydrochloric Acid Leaching by Using Isopropanol as a Solvent. Mining, Metallurgy & Exploration, 2022, 39(4): 1743. DOI:10.1007/s42461-022-00648-3
    6. Hong-fu LIN, Wei WENG, Shui-ping ZHONG, et al. Enhanced recovery of zinc and lead by slag composition optimization in rotary kiln. Transactions of Nonferrous Metals Society of China, 2022, 32(9): 3110. DOI:10.1016/S1003-6326(22)66007-2
    7. Anna‐Maria Liliou, Maria‐Liliana Saru, Andrei Veksha, et al. Selective leaching of scandium and yttrium from red mud induced by hydrothermal treatment. Journal of Chemical Technology & Biotechnology, 2021, 96(9): 2620. DOI:10.1002/jctb.6805
    8. Ramezan Ali Nozhati, Asghar Azizi. Leaching of copper and zinc from the tailings sample obtained from a porcelain stone mine: feasibility, modeling, and optimization. Environmental Science and Pollution Research, 2020, 27(6): 6239. DOI:10.1007/s11356-019-07199-z

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (666) PDF downloads (26) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return