Shi-kai Wu, Ye Pan, Ning Wang, Tao Lu,  and Wei-ji Dai, Azo dye degradation behavior of AlFeMnTiM (M=Cr, Co, Ni) high-entropy alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp. 124-132. https://doi.org/10.1007/s12613-019-1716-x
Cite this article as:
Shi-kai Wu, Ye Pan, Ning Wang, Tao Lu,  and Wei-ji Dai, Azo dye degradation behavior of AlFeMnTiM (M=Cr, Co, Ni) high-entropy alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp. 124-132. https://doi.org/10.1007/s12613-019-1716-x
Research Article

Azo dye degradation behavior of AlFeMnTiM (M=Cr, Co, Ni) high-entropy alloys

+ Author Affiliations
  • Corresponding author:

    Ye Pan    E-mail: panye@seu.edu.cn

  • Received: 10 March 2018Revised: 30 June 2018Accepted: 29 July 2018
  • Because of the potential carcinogenic effects and difficult degradation of azo dyes, their degradation has been a longstanding problem. The degradation of azo dye Direct Blue 6 (DB6) using ball-milled (BM) high-entropy alloy (HEA) powders was characterized in this work. Newly designed AlFeMnTiM (M=Cr, Co, Ni) HEAs synthesized by mechanical alloying (MA) showed excellent performance in the degradation of azo dye DB6. The degradation efficiency of AlFeMnTiCr is approximately 19 times greater than that of the widely used commercial Fe-Si-B amorphous alloy ribbons and more than 100 times greater than that of the widely used commercial zero-valent iron (ZVI) powders. The galvanic-cell effect and the unique crystal structure are responsible for the good degradation performance of the BM HEAs. This study indicates that BM HEAs are attractive, valuable, and promising environmental catalysts for wastewater contaminated by azo dyes.
  • loading
  • [1]
    H.N. Liu, G.T. Li, J.H. Qu, and H.J. Liu, Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound, J. Hazard. Mater., 144(2007), No. 1-2, p. 180.
    [2]
    B. Chen, X.K. Wang, C. Wang, W.Q. Jiang, and S.P. Li, Degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron, Ultrason. Sonochem., 18(2011), No. 5, p. 1091.
    [3]
    J.H. Ramirez, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, and L.M. Madeira, Azo-dye Orange Ⅱ degradation by heterogeneous Fenton-like reaction using carbon-Fe, Appl. Catal. B, 75(2007), No. 3-4, p. 312.
    [4]
    Y.C. Dong, L.C. He, and M. Yang, Solar degradation of two azo dyes by photocatalysis using Fe(Ⅲ)-oxalate complexes/H2O2 under different weather conditions, Dyes Pigm., 77(2008), No. 2, p. 343.
    [5]
    Z.Y. Lv, X.J. Liu, B. Jia, H. Wang, Y. Wu, and Z.P. Lu, Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions, Sci. Rep., 6(2016), No. 4, p. 34213.
    [6]
    Y.N. Liu, H. Tian, and A.H. Si, Gliding arc discharge for decolorization and biodegradability of azo dyes and printing and dyeing wastewater, Plasma Chem. Plasma Process., 32(2012), No. 3, p. 597.
    [7]
    H.L. Lv, H.Y. Zhao, T.C. Cao, L. Qian, Y.B. Wang, and G.H. Zhao, Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework, J. Mol. Catal. A:Chem., 400(2015), No. 3, p. 81.
    [8]
    R. Patel and S. Suresh, Decolourization of azo dyes using magnesium-palladium system, J. Hazard. Mater., 137(2006), No. 3, p. 1729.
    [9]
    S.H. Chang, K.S. Wang, S.J. Chao, T.H. Peng, and L.C. Huang, Degradation of azo and anthraquinone dyes by a low-cost Fe0/air process, J. Hazard. Mater., 166(2009), No. 2-3, p. 1127.
    [10]
    J.M. Kwon, Y.H. Kim, B.K. Song, S.H. Yeom, B.S. Kim, and J.B. Im, Novel immobilization of titanium dioxide (TiO2) on the fluidizing carrier and its application to the degradation of azo-dye, J. Hazard. Mater., 134(2006), No. 1-3, p. 230.
    [11]
    E.S. Aazam and R.M. Mohamed, Environmental remediation of direct blue dye solutions by photocatalytic oxidation with cuprous oxide, J. Alloys Compd., 577(2013), No. 45, p. 550.
    [12]
    P. Singla, M. Sharma, O.P. Pandey, and K. Singh, Photocatalytic degradation of azo dyes using Zn-doped and undoped TiO2 nanoparticles, Appl. Phys. A, 116(2014), No. 1, p. 371.
    [13]
    N. Divya, A. Bansal, and A.K. Jana, Photocatalytic degradation of azo dye Orange Ⅱ in aqueous solutions using copper-impregnated titania, Int. J. Environ. Sci. Technol., 10(2013), No. 6, p. 1265.
    [14]
    A. Pandey, P. Singh, and L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeterior. Biodegrad., 59(2007), No. 2, p. 73.
    [15]
    A.D. Bokare, R.C. Chikate, C.V. Rode, and K.M. Paknikar, Effect of surface chemistry of Fe-Ni nanoparticles on mechanistic pathways of azo dye degradation, Environ. Sci. Technol., 41(2007), No. 21, p. 7437.
    [16]
    X. Liu, L. Huang, D.S. Zhang, T.T. Yan, J.P. Zhang, and L.Y. Shi, Light driven fabrication of highly dispersed Mn-Co/RGO and the synergistic effect in catalytic degradation of methylene blue, Mater. Des., 140(2018), p. 286.
    [17]
    M. Amir, U. Kurtan, and A. Baykal, Synthesis and application of magnetically recyclable nanocatalyst Fe3O4@Nico@Cu in the reduction of azo dyes, Chin. J. Catal., 36(2015), No. 8, p. 1280.
    [18]
    Y. Liu, X. Chen, J. Li, and C. Burda, Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts, Chemosphere, 61(2005), No. 1, p. 11.
    [19]
    C.C. Amorim, M.M.D. Leão, R.F.P.M. Moreira, J.D. Fabris, and A.B. Henriques, Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes, Chem. Eng. J., 224(2013), No. 1, p. 59.
    [20]
    S.D. Kalme, G.K. Parshetti, S.U. Jadhav, and S.P. Govindwar, Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112, Bioresour. Technol., 98(2007), No. 7, p. 1405.
    [21]
    N. Ertugay and F.N. Acar, Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton's oxidation:Kinetic study, Arabian J. Chem., 10(2017), Suppl. 1, p. S1158.
    [22]
    I.K. Konstantinou and T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations:A review, Appl. Catal. B, 49(2004), No. 1, p. 3.
    [23]
    Y. Tang, Y. Shao, N. Chen, X. Liu, S.Q. Chen, and K.F. Yao, Insight into the high reactivity of commercial Fe-Si-B amorphous zero-valent iron in degrading azo dye solutions, RSC Adv., 5(2015), No. 43, p. 34032.
    [24]
    R.V. Solomon, I.S. Lydia, J.P. Merlin, and P. Venuvanalingam, Enhanced photocatalytic degradation of azo dyes using nano Fe3O4, J. Iran. Chem. Soc., 9(2012), No. 2, p. 101.
    [25]
    W. Li, S.K. Guan, J. Chen, J.H. Hu, S. Chen, L.G. Wang, and S.J. Zhu, Preparation and in vitro degradation of the composite coating with high adhesion strength on biodegradable Mg-Zn-Ca alloy, Mater. Charact., 62(2011), No. 12, p. 1158.
    [26]
    J.Q. Wang, Y.H. Liu, M.W. Chen, D.V. Louzguine-Luzgin, A. Inoue, and J.H. Perepezko, Excellent capability in degrading azo dyes by MgZn-based metallic glass powders, Sci. Rep., 2(2012), No. 5, art. No. 418.
    [27]
    X.D. Qin, Z.W. Zhu, G. Liu, H.M. Fu, H.W. Zhang, A.M. Wang, H. Li, and H.F. Zhang, Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass, Sci. Rep., 5(2015), No. 2, art. No. 18226.
    [28]
    Y.F. Zhao, J.J. Si, J.G. Song, Q. Yang, and X.D. Hui, Synthesis of Mg-Zn-Ca metallic glasses by gas-atomization and their excellent capability in degrading azo dyes, Mater. Sci. Eng. B, 181(2014), No. 181, p. 46.
    [29]
    H.Y. Shu, M.C. Chang, C.C. Chen, and P.E. Chen, Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution, J. Hazard. Mater., 184(2010), No. 1-3, p. 499.
    [30]
    Y. Keum and Q.X. Li, Reduction of nitroaromatic pesticides with zero-valent iron, Chemosphere, 54(2004), No. 3, p. 255.
    [31]
    C.F. Lee and T.T. Shun, Effect of Fe content on microstructure and mechanical properties of Al0.5CoCrFexNiTi0.5 high-entropy alloys, Mater. Charact., 114(2016), No. 2, p. 179.
    [32]
    L.X. Yin, D.D. Zhang, J. Wang, J.F. Huang, X.G. Kong, J.M. Fang, and F. Zhang, Improving sunlight-driven photocatalytic activity of ZnO nanostructures upon decoration with Fe(Ⅲ) cocatalyst, Mater. Charact., 127(2017), No. 3, p. 179.
    [33]
    R.R. Eleti, V. Raju, M. Veerasham, S.R. Reddy, and P.P. Bhattacharjee, Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy, Mater. Charact., 136(2018), No. 2, p. 286.
    [34]
    H.T. Zhou, Y.J. Su, N. Liu, F.T. Kong, X.P. Wang, X. Zhang, and Y.Y. Chen, Modification of microstructure and properties of Ti-47Al-2Cr-4Nb-0.3W alloys fabricated by SPS with trace multilayer graphene addition, Mater Charact., 138(2018), No. 1, p. 1.
    [35]
    Z.B. Cai, G. Jin, X.F. Cui, Z. Liu, W. Zheng, Y. Li, and L.Q. Wang, Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying, Mater. Charact., 120(2016), No. 3, p. 229.
    [36]
    O. Maulik and V. Kumar, Synthesis of AlFeCuCrMgx (x=0, 0.5, 1, 1.7) alloy powders by mechanical alloying, Mater. Charact., 110(2015), No. 2, p. 116.
    [37]
    H. Kusic, N. Koprivanac, and L. Srsan, Azo dye degradation using Fenton type processes assisted by UV irradiation:A kinetic study, J. Photochem. Photobiol. A, 181(2006), No. 2-3, p. 195.
    [38]
    C.Q. Zhang, Z.W. Zhu, H.F. Zhang, and Z.Q. Hu, Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys, Chin. Sci. Bull., 56(2011), No. 36, p. 3988.
    [39]
    C.Q. Zhang, H.F. Zhang, M.Q. Lv, and Z.Q. Hu, Decolorization of azo dye solution by Fe-Mo-Si-B amorphous alloy, J. Non-Cryst Solids, 356(2010), No. 33-34, p. 1703.
    [40]
    J. Wang, Y. Liu, M. Chen, G. Xie, D.V. Louzguine-Luzgin, A. Inoue, and J.H. Perepezko, Rapid degradation of azo dye by Fe-based metallic glass powder, Adv. Funct. Mater., 22(2012), No. 12, p. 2567.
    [41]
    J. Fan, Y. Guo, J. Wang, and M. Fan, Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles, J. Hazard. Mater., 166(2009), No. 2-3, p. 904.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(605) PDF Downloads(47) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return