Cite this article as: |
Saeed Aliakbari Sani, Hossein Arabi, Shahram Kheirandish, and Golamreza Ebrahimi, Investigation on the homogenization treatment and element segregation on the microstructure of a γ/γ'-cobalt-based superalloy, Int. J. Miner. Metall. Mater., 26(2019), No. 2, pp. 222-233. https://doi.org/10.1007/s12613-019-1727-7 |
Hossein Arabi E-mail: arabi@iust.ac.ir
[1] |
V.A. Wills and D.G. McCartney, A comparative study of solidification features in nickel-base superalloys:Microstructural evolution and microsegregation, Mater. Sci. Eng. A, 145(1991), No. 2, p. 223.
|
[2] |
N. Warnken, D. Ma, A. Drevermann, R.C. Reed, S.G. Fries, and I. Steinbach, Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys, Acta Mater., 57(2009), No. 19, p. 5862.
|
[3] |
G.D. Merz, T.Z. Kattamis, and A.F. Giamei, Microsegration and homogenization of Ni-7.5wt%Al-2.0wt%Ta dendritic monocrystals, J. Mater. Sci., 14(1979), No. 3, p. 663.
|
[4] |
M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed, Modelling of the microsegregation in CMSX-4 superalloy and its homogenisation during heat treatment, Superalloys, 2000, p. 263.
|
[5] |
Z.J. Miao, A.D. Shan, Y.B. Wu, J. Lu, W.l.. Xu, and H.W. Song, Quantitative analysis of homogenization treatment of INCONEL718 superalloy, Trans. Nonferrous Met. Soc. China, 21(2011), No. 5, p. 1009.
|
[6] |
Y.J. Li, Y.F. Teng, X.H. Feng, and Y.S. Yang, Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy, J. Mater. Sci. Technol., 33(2017), No. 1, p. 105.
|
[7] |
J.B. le Graverend, J. Cormier, P. Caron, S. Kruch, F. Gallerneau, and J. Mendez, Numerical simulation of γ/γ' microstructural evolutions induced by TCP-phase in the MC2 nickel base single crystal superalloy, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2620.
|
[8] |
A.S. Golezani, M. Bageri, and R. Samadi, Microstructural change, and impact toughness property of Inconel 738LC after 12 years of service, Eng. Fail. Anal., 59(2016), p. 624.
|
[9] |
M.R. Jahangiri, S.M.A. Boutorabi, and H. Arabi, Study on incipient melting in cast Ni base IN939 superalloy during solution annealing and its effect on hot workability, Mater. Sci. Technol., 28(2012), No. 12, p. 1402.
|
[10] |
S.H. Fu, J.X. Dong, M.C. Zhang, and X.S. Xie, Alloy design and development of INCONEL718 type alloy, Mater. Sci. Eng. A, 499(2009), No. 1-2, p. 215.
|
[11] |
Y.Z. Zhou and A. Volek, Effect of carbon additions on hot tearing of a second generation nickel-base superalloy, Mater. Sci. Eng. A, 479(2008), No. 1-2, p. 324.
|
[12] |
C.N. Wei, H.Y. Bor, and L. Chang, The effects of carbon content on the microstructure and elevated temperature tensile strength of a nickel-base superalloy, Mater. Sci. Eng. A, 527(2010), No. 16-17, p. 3741.
|
[13] |
F. Long, Y.S. Yoo, C.Y. Jo, S.M. Seo, Y.S. Song, T. Jin, and Z.Q. Hu, Formation of η and σ phase in three polycrystalline superalloys and their impact on tensile properties, Mater. Sci. Eng. A, 527(2009), No. 1-2, p. 361.
|
[14] |
J. Zhang and R.F. Singer, Effect of Zr and B on castability of Ni-based superalloy IN792, Metall. Mater. Trans. A, 35(2004), No. 4, p. 1337.
|
[15] |
A. Epishin, T. Link, U. Brückner, B. Fedelich, and P. Portella, Effects of segregation in nickel-base superalloys:Dendritic stresses, Superalloys, 2004, p. 537.
|
[16] |
P. Li, S.S. Li, and Y.F. Han, Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX, Intermetallics, 19(2011), No. 2, p. 182.
|
[17] |
M.T. Kim, D.S. Kim, and O.Y. Oh, Effect of γ' precipitation during hot isostatic pressing on the mechanical property of a nickel-based superalloy, Mater. Sci. Eng. A, 480(2008), No. 1-2, p. 218.
|
[18] |
D.L. Sponseller, Differential thermal analysis of nickel-base superalloys, Superalloys, 1996, p. 259.
|
[19] |
D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd Ed., CRC Press, State of Florida, 1992, p. 61.
|
[20] |
F.J. Humphreysand M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, The Netherlands, 2004, p. 137.
|
[21] |
J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Cobalt-base high-temperature alloys, Science, 312(2006), No. 5770, p. 90.
|
[22] |
K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, and H. Inui, Creep deformation of single crystals of new Co-Al-W-based alloys with fcc/L12 two-phase microstructures, Philos. Mag., 92(2012), No. 32, p. 4011.
|
[23] |
M.S. Titus, A. Suzuki, and T.M. Pollock, Creep and directional coarsening in single crystals of new γ-γ' cobalt-base alloys, Scripta Mater., 66(2012), No. 8, p. 574.
|
[24] |
F. Xue, H.J. Zhou, X.H. Chen, Q.Y. Shi, H. Chang, M.L. Wang, X.F. Ding, and Q. Feng, Creep behavior of a novel Co-Al-W-base single crystal alloy containing Ta and Ti at 982℃, MATEC Web of Conferences, 14(2014), p. 15002.
|
[25] |
A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, and M. Göken, Creep properties of different γ'-strengthened Co-base superalloys, Mater. Sci. Eng. A, 550(2012), p. 333.
|
[26] |
S. Neumeier, L.P. Freund, and M. Göken, Novel wrought γ/γ' cobalt base superalloys with high strength and improved oxidation resistance, Scripta Mater., 109(2015), p. 104.
|
[27] |
A. Suzuki and T.M. Pollock, High-temperature strength and deformation of γ/γ' two-phase Co-Al-W-base alloys, Acta Mater., 56(2008), No. 6, p. 1288.
|
[28] |
M. Tsunekane, A. Suzuki, and T.M. Pollock, Single-crystal solidification of new Co-Al-W-base alloys, Intermetallics, 19(2011), No. 5, p. 636.
|
[29] |
X.F. Ding, T. Mi, F. Xue, H.J. Zhou, and M.L. Wang, Microstructure formation in γ-γ' Co-Al-W-Ti alloys during directional solidification, J. Alloys Compd., 599(2014), p. 159.
|
[30] |
E.T. McDevitt, Feasibility of cast and wrought Co-Al-WX gamma-prime superalloys, Mater. Sci. Forum, 783-786(2014), p. 1159.
|
[31] |
I. Lopez-Galilea, C. Zenk, S. Neumeier, S. Huth, W. Theisen, and M. Göken, The thermal stability of intermetallic compounds in an as-cast SX Co-base superalloy, Adv. Eng. Mater., 17(2015), No. 6, p. 741.
|
[32] |
J. Koßmann, C.H. Zenk, I. Lopez-Galilea, S. Neumeier, A. Kostka, S. Huth, W. Theisen, M. Göken, R. Drautz, and T. Hammerschmidt, Microsegregation and precipitates of an as-cast Co-based superalloy-microstructural characterization and phase stability modelling, J. Mater. Sci., 50(2015), No. 19, p. 6329.
|
[33] |
P.J. Bocchini, E.A. Lass, K.W. Moon, M.E. Williams, C.E. Campbell, U.R. Kattner, D.C. Dunand, and D.N. Seidman, Atom-probe tomographic study of γ/γ' interfaces and compositions in an aged Co-Al-W superalloy, Scripta Mater., 68(2013), No. 8, p. 563.
|
[34] |
F. Pyczak, A. Bauer, M. Göken, U. Lorenz, S. Neumeier, M. Oehring, J. Paul, N. Schell, A. Schreyer, A. Stark, and F. Symanzik, The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys, J. Alloys Compd., 632(2015), p. 110.
|
[35] |
H.Y. Yan, V.A. Vorontsov, and D. Dye, Alloying effects in polycrystalline γ' strengthened Co-Al-W base alloys, Intermetallics, 48(2014), p. 44.
|
[36] |
K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system, Mater. Trans., 49(2008), No. 6, p. 1474.
|
[37] |
R.C. Kramb, M.M. Antony, and S.L. Semiatin, Homogenization of a nickel-base superalloy ingot material, Scripta Mater., 54(2006), No. 9, p. 1645.
|
[38] |
S.R. Hegde, R.M. Kearsey, and J.C. Beddoes, Designing homogenization-solution heat treatments for single crystal superalloys, Mater. Sci. Eng. A, 527(2010), No. 21-22, p. 5528.
|
[39] |
A. Janotti, M. Krčmar, C.L. Fu, and R.C. Reed, Solute diffusion in metals:Larger atoms can move faster, Phys. Rev. Lett., 92(2004), No. 8, p. 85901.
|
[40] |
S.S. Naghavi, V.I. Hegde, and C. Wolverton, Diffusion coefficients of transition metals in fcc cobalt, Acta Mater., 132(2017), p. 467.
|
[41] |
L. Gong, B. Chen, Z.H. Du, M.S. Zhang, R.C. Liu, and K. Liu, Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G, J. Mater. Sci. Technol., 34(2016), No. 3, p. 541.
|
[42] |
X.L. Pan, H.Y. Yu, G.F. Tu, W.R. Sun, and Z.Q. Hu, Segregation and diffusion behavior of niobium in a highly alloyed nickel-base superalloy, Trans. Nonferrous Met. Soc. China, 21(2011), No. 11, p. 2402.
|
[43] |
Y. Minamino, Y. Koizumi, N. Tsuji, T. Yamada, and T. Takahashi, Interdiffusion in Co solid solutions of Co-Al-Cr-Ni system at 1423 K, Mater. Trans., 44(2003), No. 1, p. 63.
|
[44] |
S. Obata, M. Moniruzzaman, and Y. Murata, Interdiffusion in Co-based Co-Al-W ternary alloys at elevated temperatures, ISIJ Int., 54(2014), No. 10, p. 2129.
|
[45] |
H. Chang, G.L. Xu, X.G. Lu, L. Zhou, K. Ishida, and Y.W. Cui, Experimental and phenomenological investigations of diffusion in Co-Al-W alloys, Scripta Mater., 106(2015), p. 13.
|
[46] |
J. Chen, L. Zhang, J. Zhong, W. Chen, and Y. Du, High-throughput measurement of the composition-dependent interdiffusivity matrices in Ni-rich fcc Ni-Al-Ta alloys at elevated temperatures, J. Alloys Compd., 688(2016), p. 320.
|
[47] |
S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Göken, Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo, Acta Mater., 106(2016), p. 304.
|
[48] |
A. Green and N. Swindells, Measurement of interdiffusion coefficients in Co-AI and Ni-AI systems between 1000 and 1200℃, Mater. Sci. Technol., 1(1985), No. 2, p. 101.
|
[49] |
I. Povstugar, P.P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, and D. Raabe, Elemental partitioning and mechanical properties of Ti-and Ta-containing Co-Al-W-base superalloys studied by atom probe tomography and nanoindentation, Acta Mater., 78(2014), p. 78.
|
[50] |
I. Povstugar, C.H. Zenk, R. Li, P.P. Choi, S. Neumeier, O. Dolotko, M. Hoelzel, M. Göken, and D. Raabe, Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ' strengthened Co base superalloys, Mater. Sci. Technol., 32(2016), No. 3, p. 220.
|
[51] |
V.A. Vorontsov, J.S. Barnard, K.M. Rahman, H.Y. Yan, P.A. Midgley, and D. Dye, Coarsening behaviour and interfacial structure of γ' precipitates in Co-Al-W based superalloys, Acta Mater., 120(2016), p. 14.
|
[52] |
C.H. Zenk, S. Neumeier, H.J. Stone, and M. Göken, Mechanical properties and lattice misfit of γ/γ' strengthened Co-base superalloys in the Co-W-Al-Ti quaternary system, Intermetallics, 55(2014), p. 28.
|
[53] |
A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Microstructure and creep strength of different γ/γ'-strengthened Co-base superalloy variants, Scripta Mater., 63(2010), No. 12, p. 1197.
|
[54] |
M.J. Donachie and S.J. Donachie, Superalloys:A Technical Guide, ASM international, New York, 2002, p. 82.
|
[55] |
R.C. Reed, The Superalloys:Fundamentals and Applications, Cambridge University Press, Cambridge, 2008, p. 216.
|