Cite this article as: |
Shi-jian Li, Guo-guang Cheng, Zhi-qi Miao, Lie Chen, and Xin-yan Jiang, Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, pp. 291-300. https://doi.org/10.1007/s12613-019-1737-5 |
Guo-guang Cheng E-mail: chengguoguang@metall.ustb.edu.cn
[1] |
K. Namiki and K. Isokawa, Effects of alloying elements on the rotating bending fatigue properties of carburized steels, Trans. Iron Steel Inst. Jpn., 26(1986), No. 7, p. 642.
|
[2] |
H. Suito and R. Inoue, Thermodynamics on control of inclusions composition in ultra-clean steels, ISIJ Int., 36(1996), No. 5, p. 528.
|
[3] |
M. Nagao, K. Hiraoka, and Y. Unigame, Influence of nonmetallic inclusion size on rolling contact fatigue life in bearing steel, Sanyo Tech. Rep., 12(2005), No. 1, p. 38.
|
[4] |
M. Jiang, X.H. Wang, and W.J. Wang, Control of non-metallic inclusions by slag-metal reactions for high strength alloying steels, Steel Res. Int., 81(2010), No. 9, p. 759.
|
[5] |
X.D. Miu, C.M. Yu, C.M. Shi, J.F. Du, H.G. Zhu and G.G. Cheng, Formation and control of calcium aluminates in bearing steel, J. Univ. Sci. Technol. Beijing, 29(2008), No. 8, p. 771.
|
[6] |
V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Ryberon, V. Schmitt, S. Hans, and H. Poisson, A comprehensive model of the electroslag remelting process:Description and validation, Metall. Mater. Trans. B, 40(2009), No.3, p. 271.
|
[7] |
S.K. Matity, N.B. Ballal, G. Goldhahn, and R. Kwaalla, Development of ultrahigh strength low alloy steel through electroslag refining process, ISIJ Int., 49(2009), No. 6, p. 902.
|
[8] |
Y.W. Dong, Z.H. Jiang, Y.L. Cao, A. Yu, and D. Hou, Effect of slag on inclusions during electroslag remelting process of die steel, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1315.
|
[9] |
A. Mitchell, F.R. Carmona, and E. Samuelsson, The deoxidation of low-alloy steel ingots during ESR, Trans. Iron Steel Inst. Jpn., 24(1984), No. 7, p. 547.
|
[10] |
F. Reyes-Carmona and A. Mitchell, Deoxidation of ESR slags, ISIJ Int., 32(1992), No. 4, p. 529.
|
[11] |
S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, C.W. Li, and X.Y. Jiang, Kinetic analysis of aluminum and oxygen variation of G20CrNi2Mo bearing steel during industrial electroslag remelting process, ISIJ Int., 57(2017), No. 12, p. 2148.
|
[12] |
M. Sasabe and Y. Kinoshita, Permeability of oxygen through molten CaO-SiO2-Al2O3 system with Fe2O3 or CaF2, Tetsu-to-Hagane, 65(1979), No. 12, p. 1727.
|
[13] |
E. Shibata, H.P. Sun, and K. Mori, Transfer rate of oxygen from gas into liquid iron through molen slag, Tetsu-to-Hagane, 85(1999), No. 1, p. 27.
|
[14] |
S.J. Li, G.G. Cheng, L. Yang, L. Chen, Q.Z. Yan, and C.W. Li, A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process:Description and verification, ISIJ Int., 57(2017), No. 4, p. 713.
|
[15] |
K. Riyahimalayeri, P. Ölund, and M. Selleby, Effect of vacuum degassing on non-metallic inclusions in an ASEA-SKF ladle furnace, Ironmaking Steelmaking, 40(2013), No. 6, p. 470.
|
[16] |
H. Yin, H. Shibata, T. Emi, and M. Suzuki, "In-situ" observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts, ISIJ Int., 37(1997), No. 10, p. 936.
|
[17] |
Y. Kang, B. Sahebkar, P.R. Scheller, K. Morita, and D. Sichen, Observation on physical growth of nonmetallic inclusion in liquid steel during ladle treatment, Metall. Mater. Trans. B, 42(2011), No. 3, p. 522.
|
[18] |
W.Z. Mu, N. Dogan, and K.S. Coley, Agglomeration of non-metallic inclusions at steel/Ar interface:In-situ observation experiments and model validation, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2379.
|
[19] |
G. Ye, P. Jönsson, and T. Lund, Thermodynamics and kinetics of the modification of Al2O3 inclusions, ISIJ Int., 36(1996), Suppl., p. S105.
|
[20] |
H. Ohta and H. Suito, Calcium and magnesium deoxidation in Fe-Ni and Fe-Cr alloys equilibrated with CaO-Al2O3 and CaO-Al2O3-MgO slags, ISIJ Int., 43(2003), No. 9, p. 1293.
|
[21] |
M.E. Fraser and A. Mitchell, Mass transfer in the electroslag process Pt. 1. Mass-transfer model, Ironmaking Steelmaking, 3(1976), No. 5, p. 279.
|
[22] |
A. Mitchell, J. Szekely, and J.F. Elliott, Electroslag Refining, Iron and Steel Institute, London, 1973, p. 25.
|
[23] |
L. Yang and G.G. Cheng, Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 869.
|
[24] |
Z.B. Li, Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2010.
|
[25] |
The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking Data Sourcebook, Gordon and Breach Science Pub., New York, 1988, p. 45.
|
[26] |
L.F. Zhang, Y. Ren, H.J. Duan, W. Yang, and L.Y. Sun, Stability diagram of Mg-Al-O system inclusions in molten steel, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1809.
|
[27] |
J. Zhang, Calculated Thermodynamics of Metallurgical Melts and Solution, Metallurgical Industry Press, Beijing, 2007.
|
[28] |
J. Fu, An investigation of mechanism on the removal of oxide inclusions during ESR process, Acta Metall. Sin., 15(1979), No. 4, p. 526.
|
[29] |
K. Ogino, S. Hara, T. Miwa, and S. Kimoto, The effect of oxygen content in molten steel on the interfacial tension between molten steel and slag, Tetsu-to-Hagane, 65(1979), No. 14, p. 2012.
|
[30] |
J. Wikström, K. Nakajima, H. Shibata, A. Tilliander and P. Jönsson, In situ studies of agglomeration between Al2O3-CaO inclusions at metal/gas, metal/slag interfaces and in slag, Ironmaking Steelmaking, 35(2008), No. 8, p. 589.
|
[31] |
B.H. Reis, W.V. Bielefeldt, and A.C.F. Vilela, Efficiency of inclusion absorption by slags during secondary refining of steel, ISIJ Int., 54(2014), No. 7, p. 1584.
|
[32] |
A. Mitchell, Oxide inclusion behavior during consumable electrode remelting, Ironmaking Steelmaking, 1(1974), No. 3, p. 172.
|