Cite this article as: |
Qin-meng Wang, Song-song Wang, Miao Tian, Ding-xuan Tang, Qing-hua Tian, and Xue-yi Guo, Relationship between copper content of slag and matte in the SKS copper smelting process, Int. J. Miner. Metall. Mater., 26(2019), No. 3, pp. 301-308. https://doi.org/10.1007/s12613-019-1738-4 |
Xue-yi Guo E-mail: xyguo@csu.edu.cn
[1] |
S. Wang, W. Davenport, A. Siegmund, S. Yao, T. Gonzales, G. Walters, and D. George, Copper smelting:2016 world copper smelting data,[in] 9th International Copper Conference (Copper 2016), Kobe, 2016, p. 322.
|
[2] |
W.P. Liu and X.F. Yin, Recovery of copper from copper slag using a microbial fuel cell and characterization of its electrogenesis, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 621.
|
[3] |
J.S. Deng, S.M. Wen, J.Y. Deng, and D.D. Wu, Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 241.
|
[4] |
X.Y. Guo, Y.Z. Zhang, Q.M. Wang, and Z.S. Yuan, Advanced copper smelting technologies used to quadruple China copper production between 2000 and 2015,[in] 9th International Copper Conference (Copper 2016), Kobe, 2016, p. 330.
|
[5] |
K.Q. Li, S. Ping, H.Y. Wang, and W. Ni, Recovery of iron from copper slag by deep reduction and magnetic beneficiation, Int. J. Miner. Metall. Mater., 20(2013), No. 11, p. 1035.
|
[6] |
Z.Y. Ma, H.Y. Yang, S.T. Huang, Y. Lü, and L. Xiong, Ultra fast microwave-assisted leaching for the recovery of copper and tellurium from copper anode slime, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 582.
|
[7] |
D.X. Wang, Y. Liu, Z.M. Zhang, T.A. Zhang, and X.L. Li, PIV measurements on physical models of bottom blown oxygen copper smelting furnace, Can. Metall. Q., 56(2017), No. 2, p. 221.
|
[8] |
P. Coursol, P.J. Mackey, J.P.T. Kapusta, and N.C. Valencia, Energy consumption in copper smelting:A new Asian horse in the race, JOM, 67(2015), No. 5, p. 1066.
|
[9] |
L. Shui, Z.X. Cui, X.D. Ma, M.A. Rhamdhani, A.V. Nguyen, and B.J. Zhao, Understanding of bath surface wave in bottom blown copper smelting furnace, Metall. Mater. Trans. B, 47(2016), No. 1, p. 135.
|
[10] |
W.F. Li, J. Zhan, Y.Q. Fan, C. Wei, C.F. Zhang, and J.Y. Hwang, Research and industrial application of a process for direct reduction of molten high-lead smelting slag, JOM, 69(2017), No. 4, p. 784.
|
[11] |
W.F. Liu, T.Z. Yang, D.C. Zhang, L. Chen, and Y.F. Liu, A new pyrometallurgical process for producing antimony white from by-product of lead smelting, JOM, 66(2014), No. 9, p. 1694.
|
[12] |
Q.M. Wang, X.Y. Guo, and Q.H. Tian, Copper smelting mechanism in oxygen bottom blown furnace, Trans. Nonferrous Met. Soc. China, 27(2017), No. 4, p. 946.
|
[13] |
R. Sridhar, J.M. Toguri, and S. Simeonov, Copper losses and thermodynamic considerations in copper smelting, Metall. Mater. Trans. B, 28(1997), No. 2, p. 191.
|
[14] |
M. Chen, Z.X. Cui, and B.J. Zhao, Slag chemistry of bottom blown copper smelting furnace at Dongying Fangyuan,[in] 6th International Symposium on High Temperature Metallurgical Processing, Orlando, 2015, p. 257.
|
[15] |
H.Q. Liu, Z.X. Cui, M. Chen, and B.J. Zhao, Phase equilibria study of the ZnO-"FeO"-SiO2-Al2O3 System at Po2 10-8 atm, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1113.
|
[16] |
P.F. Tan, Modeling and control of copper loss in smelting slag, JOM, 63(2011), No. 12, p. 51.
|
[17] |
H. Jalkanen, J. Vehviläinen, and J. Poijärvi, Copper in solidified copper smelter slags, Scand. J. Metall., 32(2003), No. 2, p. 65.
|
[18] |
A. Ruşen, A. Geveci, Y.A. Topkaya, and B. Derin, Investigation of effect of colemanite addition on copper losses in matte smelting slag, Can. Metall. Q., 51(2012), No. 2, p. 157.
|
[19] |
A. Rusen, A. Geveci, Y.A. Topkaya, and B. Derin, Effects of some additives on copper losses to matte smelting slag, JOM, 68(2016), No. 9, p. 2323.
|
[20] |
P. Coursol, N.C. Valencia, P. Mackey, S. Bell, and B. Davis, Minimization of copper losses in copper smelting slag during electric furnace treatment, JOM, 64(2012), No. 11, p. 1305.
|
[21] |
Q.M. Wang, X.Y. Guo, S.S. Wang, L.L. Liao, and Q.H. Tian, Multiphase equilibrium modeling of oxygen bottom blown copper smelting process, Trans. Nonferrous Met. Soc. China, 27(2017), No. 11, p. 2503.
|
[22] |
Q.M. Wang, X.Y. Guo, Q.H. Tian, T. Jiang, M. Chen, and B.J. Zhao, Development and application of SKSSIM simulation software for the oxygen bottom blown copper smelting process, Metals, 7(2017), No. 10, p. 431.
|
[23] |
I. Imris, M. Sanchez, and G. Achurra, Copper losses to slags obtained from the El Teniente process, Miner. Process. Extr. Metall., 114(2005), No. 3, p. 135.
|
[24] |
A. Yazawa, S. Nakazawa, and Y. Takeda, Distribution behaviour of various elements in copper smelting systems, JOM, 36(1984), No. 8, p. 79.
|
[25] |
R. Shimpo, S. Goto, O. Ogawa, and I. Asakuru, A study on equilibrium between copper matte and slag, Can. Metall. Q., 25(1986), No. 2, p. 113.
|
[26] |
H.Q. Liu, Z.X. Cui, M. Chen, and B.J. Zhao, Phase equilibria study of the ZnO-‘FeO’-SiO2 System at fixed Po2 10-8 atm, Metall. Mater. Trans. B, 47(2016), No. 1, p.164.
|
[27] |
C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, FactSage thermochemical software and databases-recent developments, Calphad, 33(2009), No. 2, p. 295.
|
[28] |
B. Zhao, Phase Equilibria for Copper Smelting and Lead/Zinc Reduction Slags [Dissertations], University of Queensland, Brisbane, 1999, p. 68.
|
[29] |
J.Z. Ma, F. Wang, L. Feng, and H.B. Huang, Method improvement for determination of ferrous iron in iron ore by potassium dichromate titrimetry, Chinese J. Inorg. Anal. Chem., 7(2017), No. 1, p. 39.
|
[30] |
C. Wang and C.F. Zhang, Study on choosing the best grade matte copper smelting process, World Nonferrous Met., 1002-5065(2016), No. 9, p. 21.
|