Huan-yu Zhang, Rui Li, Wen-wu Liu, Mei Zhang,  and Min Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 387-403. https://doi.org/10.1007/s12613-019-1748-2
Cite this article as:
Huan-yu Zhang, Rui Li, Wen-wu Liu, Mei Zhang,  and Min Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 387-403. https://doi.org/10.1007/s12613-019-1748-2
Invited Review

Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells

+ Author Affiliations
  • Corresponding author:

    Min Guo    E-mail: guomin@ustb.edu.cn

  • Received: 24 August 2018Revised: 16 November 2018Accepted: 24 November 2018
  • The trend toward lead-free or lead-less perovskite solar cells (PSCs) has attracted increasing attention over the past few years because the toxicity of lead (Pb) is one of the substantial restrictions for large-scale applications. Researchers have investigated the viability of substituting Pb with other elements (group 14 elements, group 2 elements, transition-metal elements, and group 13 and 15 elements) in the three-dimensional (3D) perovskites by theoretical calculations and experimental explorations. In this paper, recent research progress in Pb-less and Pb-free PSCs on the perovskite compositions, deposition methods, and device structures are summarized and the main problems that hinder the enhancement of device efficiency and stability are discussed in detail. To date, the fully Sn-based PSCs have shown a power conversion efficiency (PCE) of 8.12% and poor device stability. However, lead-less PSCs have shown higher PCE and a better stability. In addition, the introduction of double-perovskite materials also draws researchers' attention. We believe that the engineering of elemental composition, perovskite deposition methods, and interfacial modification are critical for the future development of Pb-less and Pb-free PSCs.
  • loading
  • [1]
    A. Kojima,K. Teshima,Y. Shirai,and T. Miyasaka,Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,J. Am. Chem. Soc.,131(2009),No. 17,p. 6050.
    [2]
    K. Tanaka,T. Takahashi,T. Ban,T. Kondo,K. Uchida,and N. Miura,Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3,Solid State Commun.,127(2003),No. 9-10,p. 619.
    [3]
    T. Baikie,Y.N. Fang,J.M. Kadro,et al.,Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications,J. Mater. Chem. A,1(2013),No. 18,p. 5628.
    [4]
    C.C. Stoumpos,C.D. Malliakas,and M.G. Kanatzidis,Semiconducting tin and lead iodide perovskites with organic cations:Phase transitions,high mobilities,and near-infrared photoluminescent properties,Inorg. Chem.,52(2013),No. 15,p. 9019.
    [5]
    S.Y. Sun,T. Salim,N. Mathews,et al.,The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,Energy Environ. Sci.,7(2013),No. 1,p. 399.
    [6]
    H.S. Kim,C.R. Lee,J.H. Im,et al.,Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,Sci. Rep.,2(2012),art. No. 591.
    [7]
    NREL,Best Research-Cell Efficiencies [2018-07-16]. https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg
    [8]
    M. Gratzel,The light and shade of perovskite solar cells,Nat. Mater.,13(2014),No. 9,p. 838.
    [9]
    S.J. Li,Y. Lin,W.W. Tan,et al.,Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes,Int. J. Miner. Metall. Mater.,17(2010),No. 1,p. 92.
    [10]
    M. Saliba,T. Matsui,J.Y. Seo,et al.,Cesium-containing triple cation perovskite solar cells:Improved stability,reproducibility and high efficiency,Energy Environ. Sci.,9(2016),No. 6,p. 1989.
    [11]
    W.S. Yang,B.W. Park,E.H. Jung,et al.,Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,Science,356(2017),No. 6345,p. 1376.
    [12]
    C.W. Liu,R.X. Zhu,A. Ng,et al.,Investigation of high performance TiO2 nanorod array perovskite solar cells,J. Mater. Chem. A,5(2017),No. 30,p. 15970.
    [13]
    D.Y. Son,J.H. Im,H.S. Kim,and N.G. Park,11% efficient perovskite solar cell based on ZnO nanorods:An effective charge collection system,J. Phys. Chem. C,118(2014),No. 30,p. 16567.
    [14]
    J.F. Li,Z.L. Zhang,H.P. Gao,Y. Zhang,and Y.L. Mao,Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells,J. Mater. Chem. A,3(2015),No. 38,p. 19476.
    [15]
    J.Y. Jeng,Y.F. Chiang,M.H. Lee,et al.,CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,Adv. Mater.,25(2013),No. 27,p. 3727.
    [16]
    H.S. Kim,S.H. Im,and N.G. Park,Organolead halide perovskite:New horizons in solar cell research,J. Phys. Chem. C,118(2014),No. 11,p. 5615.
    [17]
    F. Aslan,G. Adam,P. Stadler,A. Göktaş,I.H. Mutlu,and N.S. Sariciftci,Sol-gel derived In2S3 buffer layers for inverted organic photovoltaic cells,Sol. Energy,108(2014),p. 230.
    [18]
    G. Yang,H. Tao,P.L. Qin,W.J. Ke,and G.J. Fang,Recent progress in electron transport layers for efficient perovskite solar cells,J. Mater. Chem. A,4(2016),No. 11,p. 3970.
    [19]
    J.R. Lian,B. Lu,F.F. Niu,P.J. Zeng,and X.W. Zhan,Electron-transport materials in perovskite solar cells,Small Methods,2(2018),No. 10,p. 1800082.
    [20]
    Y.P. Xia,P.H. Wang,S.W. Shi,et al.,Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters,Int. J. Miner. Metall. Mater.,24(2017),No. 6,p. 675.
    [21]
    P. Gao,M. Grätzel,and M.K. Nazeeruddin,Organohalide lead perovskites for photovoltaic applications,Energy Environ. Sci.,7(2014),No. 8,p. 2448.
    [22]
    Q. Jiang,X.W. Zhang,and J.B. You,SnO2:A wonderful electron transport layer for perovskite solar cells,Small,14(2018),No. 31,art. No. 1801154.
    [23]
    P. Zhang,J. Wu,T. Zhang,et al.,Perovskite solar cells with ZnO electron-transporting materials,Adv. Mater.,30(2018),No. 3,art. No. 1703737.
    [24]
    A. Goktas,F. Aslan,B. Yesilata,and I. Boz,Physical properties of solution processable n-type Fe and Al co-doped ZnO nanostructured thin films:Role of Al doping levels and annealing,Mater. Sci. Semicon. Process.,75(2018),p. 221.
    [25]
    Z.Q. Zhu and J. Zhou,Rapid growth of ZnO hexagonal tubes by direct microwave heating,Int. J. Miner. Metall. Mater.,17(2010),No. 1,p. 80.
    [26]
    X.C. Yang,H.X. Wang,B. Cai,Z. Yu,and L.C. Sun,Progress in hole-transporting materials for perovskite solar cells,J. Energy Chem.,27(2018),No. 3,p. 650.
    [27]
    W.B. Yan,S.Y. Ye,Y.L. Li,et al.,Hole-transporting materials in inverted planar perovskite solar cells,Adv. Energy Mater.,6(2016),No. 17,art. No. 1600474.
    [28]
    M.M. Lee,J. Teuscher,T. Miyasaka,T.N. Murakami,and H.J. Snaith,Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,Science,338(2012),No. 6107,p. 643.
    [29]
    M.D. Xiao,F.Z. Huang,W.C. Huang,et al.,A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,Angew. Chem.,53(2014),No. 37,p. 9898.
    [30]
    N.J. Jeon,J.H. Noh,Y.C. Kim,W.S. Yang,S. Ryu,and S.I. Seok,Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,Nat. Mater.,13(2014),No. 9,p. 897.
    [31]
    N. Ahn,D.Y. Son,I.H. Jang,S.M. Kang,M. Choi,and N.G. Park,Highly reproducible perovskite solar cells with average efficiency of 18.3% and best Efficiency of 19.7% fabricated via lewis base adduct of lead (Ⅱ) iodide,J. Am. Chem. Soc.,137(2015),No. 27,p. 8696.
    [32]
    Q. Chen,H.P. Zhou,Z.R. Hong,et al.,Planar heterojunction perovskite solar cells via vapor-assisted solution process,J. Am. Chem. Soc.,136(2014),No. 2,p. 622.
    [33]
    Z.G. Xiao,C. Bi,Y.C. Shao,et al.,Efficient,high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,Energy Environ. Sci.,7(2014),No. 8,p. 2619.
    [34]
    W.S. Yang,J.H. Noh,N.J. Jeon,et al.,High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,Science,348(2015),No. 6240,p. 1234.
    [35]
    L. Yang,A.T. Barrows,D.G. Lidzey,and T. Wang,Recent progress and challenges of organometal halide perovskite solar cells,Rep. Prog. Phys.,79(2016),No. 2,p. 026501.
    [36]
    J.H. Noh,S.H. Im,J.H. Heo,T.N. Mandal,and S.I. Seok,Chemical management for colorful,efficient,and stable inorganic-organic hybrid nanostructured solar cells,Nano Lett.,13(2013),No. 4,p. 1764.
    [37]
    G.D. Niu,X.D. Guo,and L.D. Wang,Review of recent progress in chemical stability of perovskite solar cells,J. Mater. Chem. A,3(2015),No. 17,p. 8970.
    [38]
    T.A. Berhe,W.N. Su,C.H. Chen,et al.,Organometal halide perovskite solar cells:Degradation and stability,Energy Environ. Sci.,9(2016),No. 2,p. 323.
    [39]
    Q. Jiang,Z.M. Chu,P.Y. Wang,et al.,Planar-structure perovskite solar cells with efficiency beyond 21%,Adv. Mater.,29(2017),No. 46,art. No. 1703852.
    [40]
    D.Y. Son,J.W. Lee,Y.J. Choi,et al.,Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells,Nat. Energy,1(2016),No. 7,art. No. 16081.
    [41]
    D.Q. Bi,C.Y. Yi,J.S. Luo,et al.,Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,Nat. Energy,1(2016),No. 10,art. No. 16142.
    [42]
    X. Li,D. Bi,C. Yi,et al.,A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,Science,353(2016),No. 6294,p. 58.
    [43]
    N.J. Jeon,J.H. Noh,W.S. Yang,et al.,Compositional engineering of perovskite materials for high-performance solar cells,Nature,517(2015),No. 7535,p. 476.
    [44]
    J.X. Song,W.D. Hu,X.F. Wang,et al.,HC (NH2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells,J. Mater. Chem. A,4(2016),No. 21,p. 8435.
    [45]
    C.H. Chiang,J.W. Lin,and C.G. Wu,One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module,J. Mater. Chem. A,4(2016),No. 35,p. 13525.
    [46]
    L. Li,N. Liu,Z.Q. Xu,Q. Chen,X.D. Wang,and H.P. Zhou,Precise composition tailoring of mixed-cation hybrid perovskites for efficient solar cells by mixture design methods,ACS Nano,11(2017),No. 9,p. 8804.
    [47]
    T.Q. Niu,J. Lu,R. Munir,et al.,Stable high-performance perovskite solar cells via grain boundary passivation,Adv. Mater.,30(2018),No. 16,art. No. 1706576.
    [48]
    X.P. Zheng,B. Chen,J. Dai,et al.,Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations,Nat. Energy,2(2017),No. 7,art. No. 17102.
    [49]
    Q. Chen,H. Zhou,T.B. Song,et al.,Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells,Nano Lett.,14(2014),No. 7,p. 4158.
    [50]
    J.Z. Chen,J.Y. Seo,and N.G. Park,Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN interface,Adv. Energy Mater.,8(2018),No. 12,art. No. 1702714.
    [51]
    H.C. Zai,C. Zhu,H.P. Xie,et al.,Congeneric incorporation of CsPbBr3 nanocrystals in a hybrid perovskite heterojunction for photovoltaic efficiency enhancement,ACS Energy Lett.,3(2017),No. 1,p. 30.
    [52]
    L. Li,X. Jin,N. Liu,Q. Chen,W.B. Zhang,and H.P. Zhou,Efficient moisture-resistant perovskite solar cell with nanostructure featuring 3D amine motif,Solar RRL,2(2018),No. 9,art. No. 1800069.
    [53]
    M.A. Green,A. Ho-Baillie,and H.J. Snaith,The emergence of perovskite solar cells,Nat. Photonics,8(2014),No. 7,p. 506.
    [54]
    Q.X. Fu,X.L. Tang,B. Huang,T. Hu,L.C. Tan,L. Chen,and Y.W. Chen,Recent progress on the long-term stability of perovskite solar cells,Adv. Sci.,5(2018),No. 5,art. No. 1700387.
    [55]
    W.D. Zhu,C.X. Bao,F.M. Li,et al.,A halide exchange engineering for CH3NH3PbI3-xBrx perovskite solar cells with high performance and stability,Nano Energy,19(2016),p. 17.
    [56]
    Z. Li,M.J. Yang,J.S. Park,S.H. Wei,J.J. Berry,and K. Zhu,Stabilizing perovskite structures by tuning tolerance factor:formation of formamidinium and cesium lead iodide solid-state alloys,Chem. Mater.,28(2016),No. 1,p. 284.
    [57]
    E. Smecca,Y. Numata,I. Deretzis,et al.,Stability of solution-processed MAPbI3 and FAPbI3 layers,Phys. Chem. Chem. Phys.,18(2016),No. 19,p. 13413.
    [58]
    G.E. Eperon,S.D. Stranks,C. Menelaou,M.B. Johnston,L.M. Herz,and H.J. Snaith,Formamidinium lead trihalide:A broadly tunable perovskite for efficient planar heterojunction solar cells,Energy Environ. Sci.,7(2014),No. 3,p. 982.
    [59]
    Y. Ogomi,A. Morita,S. Tsukamoto,et al.,CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm,J. Phys. Chem. Lett.,5(2014),No. 6,p. 1004.
    [60]
    N.K. Noel,S.D. Stranks,A. Abate,et al.,Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,Energy Environ. Sci.,7(2014),No. 9,p. 3061.
    [61]
    F. Hao,C.C. Stoumpos,D.H. Cao,R.P.H. Chang,and M.G. Kanatzidis,Lead-free solid-state organic-inorganic halide perovskite solar cells,Nat. Photonics,8(2014),No. 6,p. 489.
    [62]
    T.M. Koh,T. Krishnamoorthy,N. Yantara,et al.,Formamidinium tin-based perovskite with low Eg for photovoltaic applications,J. Mater. Chem. A,3(2015),No. 29,p. 14996.
    [63]
    W.Q. Liao,D.W. Zhao,Y. Yu,et al.,Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%,Adv. Mater.,28(2016),No. 42,p. 9333.
    [64]
    W.J. Ke,C.C. Stoumpos,M.H. Zhu,et al.,Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite{en}FASnI3,Sci. Adv.,3(2017),No. 8,art. No. e1701293.
    [65]
    W.J. Ke,P. Priyanka,S. Vegiraju,et al.,Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells,J. Am. Chem. Soc.,140(2018),No. 1,p. 388.
    [66]
    Z.R. Zhao,F.D. Gu,Y.L. Li,et al.,Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%,Adv. Sci.,4(2017),No. 11,art. No. 1700204.
    [67]
    T. Yokoyama,D.H. Cao,C.C. Stoumpos,et al.,Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process,J. Phys. Chem. Lett.,7(2016),No. 5,p. 776.
    [68]
    J. Xi,Z.X. Wu,B. Jiao,et al.,Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells,Adv. Mater.,29(2017),No. 23,art. No. 1606964.
    [69]
    K.P. Marshall,M. Walker,R.I. Walton,and R.A. Hatton,Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics,Nat. Energy,1(2016),No. 12,art. No. 16178.
    [70]
    C.X. Ran,J. Xi,W.Y. Gao,et al.,Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells,ACS Energy Lett.,3(2018),No. 3,p. 713.
    [71]
    I. Chung,B. Lee,J.Q. He,R.P.H. Chang,and M.G. Kanatzidis,All-solid-state dye-sensitized solar cells with high efficiency,Nature,485(2012),No. 7399,p. 486.
    [72]
    M.H. Kumar,S. Dharani,W.L. Leong,et al.,Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation,Adv. Mater.,26(2014),No. 41,p. 7122.
    [73]
    D. Sabba,H.K. Mulmudi,R.R. Prabhakar,et al.,Impact of anionic Br-substitution on open circuit voltage in lead free perovskite (CsSnI3-xBrx) solar cells,J. Phys. Chem. C,119(2015),No. 4,p. 1763.
    [74]
    S. Gupta,T. Bendikov,G. Hodes,and D. Cahen,CsSnBr3,a lead-free halide perovskite for long-term solar cell application:Insights on SnF2 addition,ACS Energy Lett.,1(2016),No. 5,p. 1028.
    [75]
    D. Moghe,L.L. Wang,C.J. Traverse,et al.,All vapor-deposited lead-free doped CsSnBr3 planar solar cells,Nano Energy,28(2016),p. 469.
    [76]
    N. Wang,Y.Y. Zhou,M.G. Ju,et al.,Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films,Adv. Energy Mater.,6(2016),No. 24,art. No. 1601130.
    [77]
    P. Xu,S.Y. Chen,H.J. Xiang,X.G. Gong,and S.H. Wei,Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnl3,Chem. Mater.,26(2014),No. 20,p. 6068.
    [78]
    W.Z. Li,J.W. Li,J.L. Li,J.D. Fan,Y.H. Mai,and L.D. Wang,Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K,J. Mater. Chem. A,4(2016),No. 43,p. 17104.
    [79]
    L.Z. Zhu,B. Yuh,S. Schoen,et al.,Solvent-moleculemediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells,Nanoscale,8(2016),No. 14,p. 7621.
    [80]
    F. Zuo,S.T. Williams,P.W. Liang,C.C. Chueh,C.Y. Liao,and A.K.Y. Jen,Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells,Adv. Mater.,26(2014),No. 37,p. 6454.
    [81]
    C. Liu,J. Fan,H. Li,C. Zhang,and Y. Mai,Highly efficient perovskite solar cells with substantial reduction of lead content,Sci. Rep.,6(2016),art. No. 35705.
    [82]
    J.D. Fan,C. Liu,H.L. Li,C.L. Zhang,W.Z. Li,and Y.H. Mai,Molecular Self-assembly fabrication and carrier dynamics of stable and efficient CH3NH3Pb(1-x) SnxI3 perovskite solar cells,ChemSusChem,10(2017),No. 19,p. 3839.
    [83]
    C. Liu,W.Z. Li,H.L. Li,C.L. Zhang,J.D. Fan,and Y.H. Mai,C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency,Nanoscale,9(2017),No. 37,p. 13967.
    [84]
    E. Mosconi,P. Umari,and F. De Angelis,Electronic and optical properties of mixed Sn-Pb organohalide perovskites:A first principles investigation,J. Mater. Chem. A,3(2015),No. 17,p. 9208.
    [85]
    F. Hao,C.C. Stoumpos,R.P.H. Chang,and M.G. Kanatzidis,Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells,J. Am. Chem. Soc.,136(2014),No. 22,p. 8094.
    [86]
    Y.L. Li,W.H. Sun,W.B. Yan,et al.,50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6%,Adv. Energy Mater.,6(2016),No. 24,art. No. 1601353.
    [87]
    X.B. Xu,C.C. Chueh,Z.B. Yang,et al.,Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells,Nano Energy,34(2017),p. 392.
    [88]
    G. Kapil,T.S. Ripolles,K. Hamada,et al.,Highly efficient 17.6% tin-lead mixed perovskite solar cells realized through spike structure,Nano Lett.,18(2018),No. 6,p. 3600.
    [89]
    S. Lee and D.W. Kang,Highly efficient and stable Sn-rich perovskite solar cells by introducing bromine,ACS Appl. Mater. Interfaces,9(2017),No. 27,p. 22432.
    [90]
    W.Q. Liao,D.W. Zhao,Y. Yu,et al.,Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide,J. Am. Chem. Soc.,138(2016),No. 38,p. 12360.
    [91]
    D.W. Zhao,Y. Yu,C.L. Wang,et al.,Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells,Nat. Energy,2(2017),No. 4,art. No. 17018.
    [92]
    N.J. Jeon,H. Na,E.H. Jung,et al.,A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,Nat. Energy,3(2018),No. 8,p. 682.
    [93]
    D.Y. Luo,W.Q. Yang,Z.P. Wang,et al.,Enhanced photovoltage for inverted planar heterojunction perovskite solar cells,Science,360(2018),No. 6396,p. 1442.
    [94]
    M.M. Tavakoli,S.M. Zakeeruddin,M. Grätzel,and Z.Y. Fan,Large-grain tin-rich perovskite films for efficient solar cells via metal alloying technique,Adv. Mater.,30(2018),No. 11,art. No. 1705998.
    [95]
    C.M. Tsai,H.P. Wu,S.T. Chang,et al.,Role of tin chloride in tin-rich mixed-halide perovskites applied as mesoscopic solar cells with a carbon counter electrode,ACS Energy Lett.,1(2016),No. 6,p. 1086.
    [96]
    T. Krishnamoorthy,H. Ding,C. Yan,et al.,Lead-free germanium iodide perovskite materials for photovoltaic applications,J. Mater. Chem. A,3(2015),No. 47,p. 23829.
    [97]
    I. Kopacic,B. Friesenbichler,S.F. Hoefler,et al.,Enhanced performance of germanium halide perovskite solar cells through compositional engineering,ACS Appl. Energy Mater.,1(2018),No. 2,p. 343.
    [98]
    K. Wang,Z.Q. Liang,X.Q. Wang,and X.D. Cui,Lead replacement in CH3NH3PbI3 perovskites,Adv. Electron. Mater.,1(2015),No. 10,art. No. 1500089.
    [99]
    M. Pazoki,T.J. Jacobsson,A. Hagfeldt,G. Boschloo,and T. Edvinsson,Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites:Replacement of lead with alkaline-earth metals,Phys. Rev. B,93(2016),No. 14,art. No. 144105.
    [100]
    T.J. Jacobsson,M. Pazoki,A. Hagfeldt,and T. Edvinsson,Goldschmidt's rules and strontium replacement in lead halogen perovskite solar cells:Theory and preliminary experiments on CH3NH3SrI3,J. Phys. Chem. C,119(2015),No. 46,p. 25673.
    [101]
    M.C. Wu,W.C. Chen,S.H. Chan,and W.F. Su,The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications,Appl. Surf. Sci.,429(2018),p. 9.
    [102]
    M.C. Wu,T.H. Lin,S.H. Chan,and W.F. Su,Improved efficiency of perovskite photovoltaics based on Ca-doped methylammonium lead halide,J. Taiwan Inst. Chem. Eng.,80(2017),p. 695.
    [103]
    H.B. Zhang,M.H. Shang,X.Y. Zheng,et al.,Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,Electrochim. Acta,254(2017),p. 165.
    [104]
    S.H. Chan,M.C. Wu,K.M. Lee,W.C. Chen,T.H. Lin,and W.F. Su,Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,J. Mater. Chem. A,5(2017),No. 34,p. 18044.
    [105]
    X.X. Shai,L.J. Zuo,P.Y. Sun,et al.,Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite,Nano Energy,36(2017),p. 213.
    [106]
    C.F.J. Lau,M. Zhang,X.F. Deng,et al.,Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells,ACS Energy Lett.,2(2017),No. 10,p. 2319.
    [107]
    D. Perez-Del-Rey,D. Forgács,E.M. Hutter,et al.,Strontium insertion in methylammonium lead iodide:Long charge carrier lifetime and high fill-factor solar cells,Adv. Mater.,28(2016),No. 44,p. 9839.
    [108]
    H. Zhang,H. Wang,S.T. Williams,et al.,SrCl2 derived perovskite facilitating a high efficiency of 16% in hole-conductor-free fully printable mesoscopic perovskite solar cells,Adv. Mater.,29(2017),No. 15,art. No. 1606608.
    [109]
    P.P. Boix,S. Agarwala,T.M. Koh,N. Mathews,and S.G. Mhaisalkar,Perovskite solar cells:Beyond methylammonium lead iodide,J. Phys. Chem. Lett.,6(2015),No. 5,p. 898.
    [110]
    Z.H. Nie,J. Yin,H.W. Zhou,et al.,Layered and Pb-free organic-inorganic perovskite materials for ultraviolet photoresponse:(010)-oriented (CH3NH3)2MnCl4 thin film,ACS Appl. Mater. Interfaces,8(2016),No. 41,p. 28187.
    [111]
    X.P. Cui,K.J. Jiang,J.H. Huang,et al.,Cupric bromide hybrid perovskite heterojunction solar cells,Synth. Met.,209(2015),p. 247.
    [112]
    D. Cortecchia,H.A. Dewi,J. Yin,et al.,Lead-free MA2CuClxBr4-x hybrid perovskites,Inorg. Chem.,55(2016),No. 3,p. 1044.
    [113]
    X.L. Li,B.C. Li,J.H. Chang,et al.,(C6H5CH2NH3)2CuBr4:A lead-free,highly stable two-dimensional perovskite for solar cell applications,ACS Appl. Energy Mater.,1(2018),No. 6,p. 2709.
    [114]
    X.X. Liu,T.J. Huang,L.Y. Zhang,et al.,Highly stable,new,organic-inorganic perovskite (CH3NH3)2PdBr4:Synthesis,structure,and physical properties,Chemistry,24(2018),No. 19,p. 4991.
    [115]
    L.A. Frolova,D.V. Anokhin,K.L. Gerasimov,N.N. Dremova,and P.A. Troshin,Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells,J. Phys. Chem. Lett.,7(2016),No. 21,p. 4353.
    [116]
    M. Jahandar,J.H. Heo,C.E. Song,et al.,Highly efficient metal halide substituted CH3NH3I (PbI2)1-x(CuBr2)x planar perovskite solar cells,Nano Energy,27(2016),p. 330.
    [117]
    J.J. Jin,H. Li,C. Chen,et al.,Enhanced performance of perovskite solar cells with zinc chloride additives,ACS Appl. Mater. Interfaces,9(2017),No. 49,p. 42875.
    [118]
    M.T. Klug,A. Osherov,A.A. Haghighirad,et al.,Tailoring metal halide perovskites through metal substitution:Influence on photovoltaic and material properties,Energy Environ. Sci.,10(2017),No. 1,p. 236.
    [119]
    M. Li,Z.K. Wang,M.P. Zhuo,et al.,Pb-Sn-Cu ternary organometallic halide perovskite solar cells,Adv. Mater.,30(2018),No. 20,p. art. No. 1800258.
    [120]
    S. Niki,M. Contreras,I. Repins,et al.,CIGS absorbers and processes,Prog. Photovolt:Res. Appl.,18(2010),No. 6,p. 453.
    [121]
    S.Y. Chen,A. Walsh,X.G. Gong,and S.H. Wei,Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers,Adv. Mater.,25(2013),No. 11,p. 1522.
    [122]
    H.P. Zhou,W.C. Hsu,H.S. Duan,et al.,CZTS nanocrystals:A promising approach for next generation thin film photovoltaics,Energy Environ. Sci.,6(2013),No. 10,p. 2822.
    [123]
    J. Zhang,M.H. Shang,P. Wang,et al.,n-Type doping and energy states tuning in CH3NH3Pb1-xSb2x/3I3 perovskite solar cells,ACS Energy Lett.,1(2016),No. 3,p. 535.
    [124]
    T. Oku,Y. Ohishi,and A. Suzuki,Effects of antimony addition to perovskite-type CH3NH3PbI3 photovoltaic devices,Chem. Lett.,45(2016),No. 2,p. 134.
    [125]
    S. Chatterjee,U. Dasgupta,and A.J. Pal,Sequentially deposited antimony-doped CH3NH3PbI3 films in inverted planar heterojunction solar cells with a high open-circuit voltage,J. Phys. Chem. C,121(2017),No. 37,p. 20177.
    [126]
    G.E. Eperon,G.M. Paterno,R.J. Sutton,et al.,Inorganic caesium lead iodide perovskite solar cells,J. Mater. Chem. A,3(2015),No. 39,p. 19688.
    [127]
    Y.Q. Hu,F. Bai,X.B. Liu,et al.,Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells,ACS Energy Lett.,2(2017),No. 10,p. 2219.
    [128]
    Z.K. Wang,M. Li,Y.G. Yang,et al.,High efficiency Pb-In binary metal perovskite solar cells,Adv. Mater.,28(2016),No. 31,p. 6695.
    [129]
    A. Singh,K.M. Boopathi,A. Mohapatra,Y.F. Chen,G. Li,and C.W. Chu,Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9,ACS Appl. Mater. Interfaces,10(2018),No. 3,p. 2566.
    [130]
    P.C. Harikesh,H.K. Mulmudi,B. Ghosh,et al.,Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics,Chem. Mater.,28(2016),No. 20,p. 7496.
    [131]
    J.C. Hebig,I. Kühn,J. Flohre,and T. Kirchartz,Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications,ACS Energy Lett.,1(2016),No. 1,p. 309.
    [132]
    M. Abulikemu,S. Ould-Chikh,X.H. Miao,et al.,Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9,J. Mater. Chem. A,4(2016),No. 32,p. 12504.
    [133]
    M.B. Johansson,H.M. Zhu,and E.M.J. Johansson,Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells,J. Phys. Chem. Lett.,7(2016),No. 17,p. 3467.
    [134]
    C. McDonald,C.S. Ni,V.Švrček,et al.,Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals,Nanoscale,9(2017),No. 47,p. 18759.
    [135]
    T. Singh,A. Kulkarni,M. Ikegami,and T. Miyasaka,Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications,ACS Appl. Mater. Interfaces,8(2016),No. 23,p. 14542.
    [136]
    Y. Kim,Z.Y. Yang,A. Jain,et al.,Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics,Angew. Chem. Int. Ed.,128(2016),No. 33,p. 9586.
    [137]
    B.W. Park,B. Philippe,X.L. Zhang,H. Rensmo,G. Boschloo,and E.M.J. Johansson,Bismuth based hybrid perovskites A3Bi2I9(A:methylammonium or cesium) for solar cell application,Adv. Mater.,27(2016),No. 43,p. 6806.
    [138]
    C.X. Ran,Z.X. Wu,J. Xi,et al.,Construction of compact methylammonium bismuth iodide film promoting lead-free inverted planar heterojunction organohalide solar cells with open-circuit voltage over 0.8 V,J. Phys. Chem. Lett.,8(2017),No. 2,p. 394.
    [139]
    S.S. Shin,J.P.C. Baena,R.C. Kurchin,et al.,Solvent-engineering method to deposit compact bismuth-based thin films:Mechanism and application to photovoltaics,Chem. Mater.,30(2018),No. 2,p. 336.
    [140]
    A.H. Slavney,T. Hu,A.M. Lindenberg,and H.I. Karunadasa,A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications,J. Am. Chem. Soc.,138(2016),No. 7,p. 2138.
    [141]
    E.T. McClure,M.R. Ball,W. Windl,and P.M. Woodward,Cs2AgBiX6(X=Br,Cl):New visible light absorbing,lead-free halide perovskite semiconductors,Chem. Mater.,28(2016),No. 5,p. 1348.
    [142]
    G. Volonakis,M.R. Filip,A.A. Haghighirad,et al.,Lead-free halide double perovskites via heterovalent substitution of noble metals,J. Phys. Chem. Lett.,7(2016),No. 7,p. 1254.
    [143]
    F.X. Wei,Z.Y. Deng,S.J. Sun,et al.,The synthesis,structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6(MA=methylammonium),Mater. Horiz.,3(2016),No. 4,p. 328.
    [144]
    F.X. Wei,Z.Y. Deng,S.J. Sun,et al.,Synthesis and properties of a lead-free hybrid double perovskite:(CH3NH3)2AgBiBr6,Chem. Mater.,29(2017),No. 3,p. 1089.
    [145]
    E. Greul,M.L. Petrus,A. Binek,P. Docampo,and T. Bein,Highly stable,phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications,J. Mater. Chem. A,5(2017),No. 37,p. 19972.
    [146]
    W.H. Ning,F. Wang,B. Wu,et al.,Long electron-hole diffusion length in high-quality lead-free double perovskite films,Adv. Mater.,30(2018),No. 20,art. No. 1706246.
    [147]
    C.C. Wu,Q.H. Zhang,Y. Liu,et al.,The dawn of lead-free perovskite solar cell:Highly stable double perovskite Cs2AgBiBr6 film,Adv. Sci.,5(2018),No. 3,art. No. 1700759.
    [148]
    W.Y. Gao,C.X. Ran,J. Xi,et al.,High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency,ChemPhysChem,19(2018),No. 14,p. 1696.
    [149]
    G. Volonakis,A.A. Haghighirad,R.L. Milot,et al.,Cs2InAgCl6:A new lead-free halide double perovskite with direct band gap,J. Phys. Chem. Lett.,8(2017),No. 4,p. 772.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(1014) PDF Downloads(49) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return