Cite this article as: |
Ye-fei Feng, Xiao-ming Zhou, Jin-wen Zou, and Gao-feng Tian, Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 493-499. https://doi.org/10.1007/s12613-019-1756-2 |
Jin-wen Zou E-mail: jt670315@sina.com
[1] |
M.J. Zhang, F.G. Li, S.Y. Wang, and C.Y. Liu, Effect of powder preparation technology on the hot deformation behavior of HIPed P/M nickel-based superalloy FGH96, Mater. Sci. Eng. A, 528(2011), No. 12, p. 4030.
|
[2] |
Y.L. Gu, Y.H. He, S.Y. Qu, G.D. Zhang, F. Zheng, and C.H. Tao, Thermo-mechanical fatigue behavior of nickel-base powder metallurgy superalloy FGH96 under tension-tension loading, Acta Metall. Sin., 23(2010), No. 2, p. 147.
|
[3] |
J. Mao, K.M. Chang, W.H. Yang, K. Ray, S.P. Vaze, and D.U. Ferrer, Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI, Metall. Mater. Trans. A, 32(2001), No. 10, p. 2441.
|
[4] |
S.G. Tian, J. Xie, X.M. Zhou, B.J. Qian, J.W. Lun, L.L. Yu, and W.X. Wang, Creep behaviors and influence factors of FGH95 Ni-base superalloy, Rare. Met. Mater. Eng., 40(2011), No. 5, p. 807.
|
[5] |
Z.C. Peng, G.F. Tian, J. Jiang, M.Z. Li, Y. Chen, J.W. Zou, and F.P.E. Dunne, Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy, Mater. Sci. Eng. A, 676(2016), p. 441.
|
[6] |
G.R. Leverant and B.H. Kear, The mechanism of creep in gamma prime precipitation-hardened nickel-base alloys at intermediate temperatures, Metall. Mater. Trans. B, 1(1970), No. 2, p. 491.
|
[7] |
W.W. Milligan and S.D. Antolovich, Yielding and deformation behavior of the single crystal superalloy PWA 1480, Metall. Trans. A, 18(1987), No. 1, p. 85.
|
[8] |
A. Manonukul, F.P.E. Dunne, and D. Knowles, Physically-based model for creep in Ni-base superalloy C263 both above and below the gama solvus, Acta Mater., 50(2002), No. 11, p. 2917.
|
[9] |
P. Caron, P.J. Henderson, T. Khan, and M. McLean, On the effects of heat treatments on the creep behaviour of a single crystal superalloy, Scripta Metall., 20(1986), No. 6, p. 875.
|
[10] |
Y.F. Feng, X.M. Zhou, J.W. Zou, X.F. Wang, G.F. Tian, and W.X. Wang, Effect of solution treatment temperature on the grain growth behavior of fine grained FGH96 superalloy, Mater. Sci. Forum, 898(2017), p. 446.
|
[11] |
J. Mao, Gamma Prime Precipitation Modeling and Strength Responses in Powder Metallurgy Superalloys [Dissertation], West Virginia University, Morgantown, 2002, p. 86.
|
[12] |
P.R. Bhowal, E.F. Wright, and E.L. Raymond, Effects of cooling rate and γ'morphology on creep and stress-rupture properties of a powder metallurgy superalloy, Metall. Trans. A, 21(1990), No. 6, p. 1709.
|
[13] |
P. Zhang, Y. Yuan, H. Yin, Y. Gu, J. Wang, M. Yang, G. Yang, and X. Song, Tensile properties and deformation mechanisms of Haynes 282 at various temperatures, Metall. Mater. Trans. A, 49(2018), No. 5, p. 1571.
|
[14] |
F. Sun, Y.F. Gu, J.B. Yan, Z.H. Zhong, and M. Yuyama, Tensile deformation-induced dislocation configurations at intermediate temperatures in a Ni-Fe-based superalloy for advanced ultra-supercritical coal-fired power plants, J. Alloys Compd., 657(2016), p. 565.
|
[15] |
M. Condat and B. Décamps, Shearing of γ'precipitates by single a/2<110> matrix dislocations in a γ/γ'Ni-based superalloy, Scripta Metall., 21(1987), No. 5, p. 607.
|
[16] |
G.B. Viswanathan, P. Sarosi, M. Henry, D. Whitis, and M. Mills, Deformation mechanisms at intermediate creep temperatures in Rene 88DT, Mater. Sci. Eng. A, 400-401(2005), p. 489.
|
[17] |
Q.Z. Chen and D.M. Knowles, Mechanism of<112>/3 slip initiation and anisotropy of γ'phase in CMSX-4 during creep at 750℃ and 750 MPa, Mater. Sci. Eng. A, 356(2003), No. 1-2, p. 352.
|