Cite this article as: | Ye-fei Feng, Xiao-ming Zhou, Jin-wen Zou, and Gao-feng Tian, Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp.493-499. https://dx.doi.org/10.1007/s12613-019-1756-2 |
M.J. Zhang, F.G. Li, S.Y. Wang, and C.Y. Liu, Effect of powder preparation technology on the hot deformation behavior of HIPed P/M nickel-based superalloy FGH96, Mater. Sci. Eng. A, 528(2011), No. 12, p. 4030.
|
Y.L. Gu, Y.H. He, S.Y. Qu, G.D. Zhang, F. Zheng, and C.H. Tao, Thermo-mechanical fatigue behavior of nickel-base powder metallurgy superalloy FGH96 under tension-tension loading, Acta Metall. Sin., 23(2010), No. 2, p. 147.
|
J. Mao, K.M. Chang, W.H. Yang, K. Ray, S.P. Vaze, and D.U. Ferrer, Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI, Metall. Mater. Trans. A, 32(2001), No. 10, p. 2441.
|
S.G. Tian, J. Xie, X.M. Zhou, B.J. Qian, J.W. Lun, L.L. Yu, and W.X. Wang, Creep behaviors and influence factors of FGH95 Ni-base superalloy, Rare. Met. Mater. Eng., 40(2011), No. 5, p. 807.
|
Z.C. Peng, G.F. Tian, J. Jiang, M.Z. Li, Y. Chen, J.W. Zou, and F.P.E. Dunne, Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy, Mater. Sci. Eng. A, 676(2016), p. 441.
|
G.R. Leverant and B.H. Kear, The mechanism of creep in gamma prime precipitation-hardened nickel-base alloys at intermediate temperatures, Metall. Mater. Trans. B, 1(1970), No. 2, p. 491.
|
W.W. Milligan and S.D. Antolovich, Yielding and deformation behavior of the single crystal superalloy PWA 1480, Metall. Trans. A, 18(1987), No. 1, p. 85.
|
A. Manonukul, F.P.E. Dunne, and D. Knowles, Physically-based model for creep in Ni-base superalloy C263 both above and below the gama solvus, Acta Mater., 50(2002), No. 11, p. 2917.
|
P. Caron, P.J. Henderson, T. Khan, and M. McLean, On the effects of heat treatments on the creep behaviour of a single crystal superalloy, Scripta Metall., 20(1986), No. 6, p. 875.
|
Y.F. Feng, X.M. Zhou, J.W. Zou, X.F. Wang, G.F. Tian, and W.X. Wang, Effect of solution treatment temperature on the grain growth behavior of fine grained FGH96 superalloy, Mater. Sci. Forum, 898(2017), p. 446.
|
J. Mao, Gamma Prime Precipitation Modeling and Strength Responses in Powder Metallurgy Superalloys [Dissertation], West Virginia University, Morgantown, 2002, p. 86.
|
P.R. Bhowal, E.F. Wright, and E.L. Raymond, Effects of cooling rate and γ'morphology on creep and stress-rupture properties of a powder metallurgy superalloy, Metall. Trans. A, 21(1990), No. 6, p. 1709.
|
P. Zhang, Y. Yuan, H. Yin, Y. Gu, J. Wang, M. Yang, G. Yang, and X. Song, Tensile properties and deformation mechanisms of Haynes 282 at various temperatures, Metall. Mater. Trans. A, 49(2018), No. 5, p. 1571.
|
F. Sun, Y.F. Gu, J.B. Yan, Z.H. Zhong, and M. Yuyama, Tensile deformation-induced dislocation configurations at intermediate temperatures in a Ni-Fe-based superalloy for advanced ultra-supercritical coal-fired power plants, J. Alloys Compd., 657(2016), p. 565.
|
M. Condat and B. Décamps, Shearing of γ'precipitates by single a/2<110> matrix dislocations in a γ/γ'Ni-based superalloy, Scripta Metall., 21(1987), No. 5, p. 607.
|
G.B. Viswanathan, P. Sarosi, M. Henry, D. Whitis, and M. Mills, Deformation mechanisms at intermediate creep temperatures in Rene 88DT, Mater. Sci. Eng. A, 400-401(2005), p. 489.
|
Q.Z. Chen and D.M. Knowles, Mechanism of<112>/3 slip initiation and anisotropy of γ'phase in CMSX-4 during creep at 750℃ and 750 MPa, Mater. Sci. Eng. A, 356(2003), No. 1-2, p. 352.
|
[1] | Ying Yan, Li-jia Chen, Guo-qiang Zhang, Dong Han, Xiao-wu Li. Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(6): 663-671. DOI: 10.1007/s12613-018-1613-8 |
[2] | Rong-hua Zhang, Ze-an Zhou, Ming-wei Guo, Jian-jun Qi, Shu-hua Sun, Wan-tang Fu. Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(10): 1043-1049. DOI: 10.1007/s12613-015-1166-z |
[3] | Meng-long Li, Fu-ming Wang, Chang-rong Li, Zhan-bing Yang, Qing-yong Meng, Su-fen Tao. Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(6): 589-597. DOI: 10.1007/s12613-015-1111-1 |
[4] | Nicoleta-Monica Lohan, Marius-Gabriel Suru, Bogdan Pricop, Leandru-Gheorghe Bujoreanu. Cooling rate effects on the structure and transformation behavior of Cu-Zn-Al shape memory alloys [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(11): 1109-1114. DOI: 10.1007/s12613-014-1015-5 |
[5] | Xin-hua Liu, Hai-you Huang, Jian-xin Xie. Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(7): 687-695. DOI: 10.1007/s12613-014-0959-9 |
[6] | Ming-lin Wang, Guo-guang Cheng, Sheng-tao Qiu, Pei Zhao, Yong Gan. Roles of titanium-rich precipitates as inoculants during solidification in low carbon steel [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(3): 276-281. DOI: 10.1007/s12613-010-0305-9 |
[7] | Gaofeng Tian, Chengchang Jia, Ying Wen, Benfu Hu. Effect of solution cooling rate on the γ′ precipitation behaviors of a Ni-base P/M superalloy [J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(6): 729-734. DOI: 10.1016/S1005-8850(08)60278-9 |
[8] | Hong Li, Jingtao Han. Effect of plastic deformation on diffusion-rolling bonding of steel sandwich plates [J]. International Journal of Minerals, Metallurgy and Materials, 2006, 13(6): 532-537. DOI: 10.1016/S1005-8850(06)60108-4 |
[9] | Fan Li, Haibo Huang. Analysis on the deformation and fracture behavior of carbon steel by in situ tensile test [J]. International Journal of Minerals, Metallurgy and Materials, 2006, 13(6): 504-507. DOI: 10.1016/S1005-8850(06)60102-3 |
[10] | Yang Gao, Shengping Wen, Feng Pan. Creep rate sensitivities of materials by a depth-sensing indentation technique [J]. International Journal of Minerals, Metallurgy and Materials, 2006, 13(4): 308-312. DOI: 10.1016/S1005-8850(06)60064-9 |
1. | Zixin Zhang, Qiang Zhao, Xiaoguang Li, et al. Creep Behavior and Fracture Mechanisms of the Dissimilar Inertia Friction Welded Joints of Deformed and Powder Metallurgy Ni‐Based Superalloys. Fatigue & Fracture of Engineering Materials & Structures, 2025, 48(1): 217. DOI:10.1111/ffe.14494 |
2. | Xiaona Ren, Zhenfan Wang, Yao Wang, et al. Research on the Enhancement of Mechanical Properties of as-HIPed FGH100L Nickel-based Superalloy via Heat Treatment. Journal of Materials Research and Technology, 2025. DOI:10.1016/j.jmrt.2025.01.240 |
3. | Yue Wang, Jinshan He, Pinpin Hu, et al. Effect of Cooling Rate on the Microstructure and Mechanical Property of Nickel-Based Superalloy MAR-M247. Materials, 2024, 17(5): 982. DOI:10.3390/ma17050982 |
4. | Xina Huang, Lei He, Yubo Cao. Numerical simulation and experiments for the microstructure and mechanical properties of Ni-based superalloys fabricated using directed energy deposition (DED). Optics & Laser Technology, 2024, 177: 111161. DOI:10.1016/j.optlastec.2024.111161 |
5. | Y F Liu, L C Zhang, W Y Xu, et al. Surface precipitate analysis of gas atomized Ni-Base superalloy powders. Journal of Physics: Conference Series, 2023, 2639(1): 012017. DOI:10.1088/1742-6596/2639/1/012017 |
6. | Lebiao Yang, Xiaona Ren, Chao Cai, et al. Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing. International Journal of Minerals, Metallurgy and Materials, 2023, 30(1): 122. DOI:10.1007/s12613-021-2349-4 |
7. | Hao Wang, Jingyu Zhang, Huashan Shang, et al. Experiment and Modelling of the Pre-Strain Effect on the Creep Behaviour of P/M Ni-Based Superalloy FGH96. Materials, 2023, 16(10): 3874. DOI:10.3390/ma16103874 |
8. | Zhiling Liu, Wei Liu, Hua Zhang, et al. Dramatically improving thermoplasticity of FGH4096 superalloy by a novel sub-solvus temperature holding followed by extremely slow cooling. Journal of Materials Research and Technology, 2023, 24: 1973. DOI:10.1016/j.jmrt.2023.03.154 |
9. | Zichao Peng, Zebang Zheng, Xuqing Wang, et al. The Microstructure Effect on Fatigue and Dwell-Fatigue in a Nickel-Based Superalloys. SSRN Electronic Journal, 2022. DOI:10.2139/ssrn.4121107 |
10. | Zichao Peng, Zebang Zheng, Xuqing Wang, et al. The microstructure effect on fatigue and dwell-fatigue in a nickel-based superalloy. Intermetallics, 2022, 151: 107740. DOI:10.1016/j.intermet.2022.107740 |
11. | Yu-ting Wu, Chong Li, Ye-fan Li, et al. Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review. International Journal of Minerals, Metallurgy and Materials, 2021, 28(4): 553. DOI:10.1007/s12613-020-2177-y |
12. | Zichao Peng, Jinwen Zou, Yu Wang, et al. Effects of solution temperatures on creep resistance in a powder metallurgy nickel-based superalloy. Materials Today Communications, 2021, 28: 102573. DOI:10.1016/j.mtcomm.2021.102573 |
13. | De-cheng Kong, Chao-fang Dong, Xiao-qing Ni, et al. Microstructure and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders. International Journal of Minerals, Metallurgy and Materials, 2021, 28(2): 266. DOI:10.1007/s12613-020-2147-4 |
14. | Zichao Peng, Jinwen Zou, Jie Yang, et al. Influence of γ’ precipitate on deformation and fracture during creep in PM nickel-based superalloy. Progress in Natural Science: Materials International, 2021, 31(2): 303. DOI:10.1016/j.pnsc.2020.12.008 |
15. | Hassan Keyvanlou, Reza Soleimani Gilakjani, Majid Nezakat. On the effect of long service exposure: changes in microstructure and mechanical properties of Ni-based superalloy. Metallurgical Research & Technology, 2020, 117(6): 624. DOI:10.1051/metal/2020080 |
16. | Xiaoyong Gao, Lin Zhang, Xiaowei Chen, et al. Effect of nitrogen content on microstructure and fatigue crack growth rate of high titanium-alloyed superalloy. Materials Characterization, 2020, 167: 110492. DOI:10.1016/j.matchar.2020.110492 |
17. | Yang Xiao, Haiqin Qin, Kejun Xu, et al. Experimental Study on Fatigue-Creep of P/M FGH96 Superalloy with Different Holding Time. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2020, 38(4): 873. DOI:10.1051/jnwpu/20203840873 |
18. | Xiao-yong Gao, Lin Zhang, Xuan-hui Qu, et al. Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11): 1551. DOI:10.1007/s12613-020-2098-9 |