Cite this article as: |
Yin-long Shao, Jing Xu, Hao Wang, Yi-wen Zhang, Jian Jia, Jian-tao Liu, Hai-liang Huang, Ming Zhang, Zhi-cheng Wang, Hong-fei Zhang, and Ben-fu Hu, Effect of Ti and Al on microstructure and partitioning behavior of alloying elements in Ni-based powder metallurgy superalloys, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 500-506. https://doi.org/10.1007/s12613-019-1757-1 |
Hao Wang E-mail: hwang@ustb.edu.cn
[1] |
T.M. Pollock and S. Tin, Nickel-based superalloys for advanced turbine engines:chemistry, microstructure, and properties, J. Propul. Power, 22(2006), No. 2, p. 361.
|
[2] |
R. Schafrik and R. Sprague, Saga of gas turbine materials:part, Ⅲ Adv. Mater. Process., 162(2004), No. 5, p. 27.
|
[3] |
F. Pyczak, B. Devrient, F.C. Neuner, and H. Mughrabi, The influence of different alloying elements on the development of the γ/γ'microstructure of nickel-base superalloys during high-temperature annealing and deformation, Acta Mater., 53(2005), No. 14, p. 3879.
|
[4] |
C. Carry and J.L. Strudel, Apparent and effective creep parameters in single crystals of a nickel base superalloy-Ⅱ. Secondary creep, Acta Metall., 26(1978), No. 5, p. 859.
|
[5] |
H. Rouault-Rogez, M. Dupeux, and M. Ignat, High temperature tensile creep of CMSX-2 nickel base superalloy single crystals, Acta Metall. Mater., 42(1994), No. 9, p. 3137.
|
[6] |
G.C. Huang, G.Q. Liu, M.N. Feng, M. Zhang, B.F. Hu, and H. Wang, The effect of cooling rates from temperatures above the γ'solvus on the microstructure of a new nickel-based powder metallurgy superalloy, J. Alloys Compd., 747(2018), p. 1062.
|
[7] |
T.T. Wang, C.S. Wang, W. Sun, X.Z. Qin, J.T. Guo, and L.Z. Zhou, Microstructure evolution and mechanical properties of GH984G alloy with different Ti/Al ratios during long-term thermal exposure, Mater. Des., 62(2014), p. 225.
|
[8] |
L.R. Liu, T. Jin, X.F. Sun, H.R. Guan, and Z.L. Hu, The effects of Al, Ti, and Ta contents on the microstructure of a nickel-based single crystal superalloy during aging, Rare Met. Mater. Eng., 37(2008), No. 7, p. 1253.
|
[9] |
M.Q. Ou, Y.C. Ma, H.L. Ge, W.W. Xing, Y.T. Zhou, S.J. Zheng, and K. Liu, Microstructure evolution and mechanical properties of a new cast Ni-base superalloy with various Ti contents, J. Alloys Compd., 735(2017), p. 193.
|
[10] |
F. Liu, W.R. Sun, S.L. Yang, Z. Li, S. Guo, H. Yang, and Z.Y. Hu, Effect of Al content on microstructure and stability of GH4169 nickel based alloy, Acta Metall. Sin., 44(2004), No. 7, p. 791.
|
[11] |
L.R. Liu, G.Q. Zu, and T. Jin, Effect of titanium on the partition behavior of alloying elements in single crystal superalloys containing rhenium, Adv. Mater. Res., 634-638(2013), p. 1724.
|
[12] |
Y.W. Zhang, F.M. Wang, and B.F. Hu, Effect of Hf content on γ/γ'lattice mismatches of FGH97 superalloy, Rare Met. Mater. Eng., 41(2012), No. 6, p. 989.
|
[13] |
J.T. Guo, Materials Science and Engineering for Superalloys, Science Press, Beijing, 2008, p. 57.
|
[14] |
W.W. Mullins and R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow, J. Appl. Phys., 34(1963), No. 2, p. 323.
|
[15] |
B.F. Hu, G.Q. Liu, K. Wu, and G.F. Tian, Morphological instability of γ'phase in nickel-based powder metallurgy superalloys, Acta Metall. Sin., 48(2012), No. 3, p. 257.
|
[16] |
G.L. Chen, Superalloy, Metallurgical Industry Press, Beijing, 1988, p. 11.
|
[17] |
Y.L. Xu, C.X. Yang, X.S. Xiao, X.L. Cao, G.Q. Jia, and Z. Shen, Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80 A, Mater. Sci. Eng. A, 530(2011), p. 315.
|