Cite this article as: |
Ao Li, Xin-peng Zhao, Hai-you Huang, Yuan Ma, Lei Gao, Yan-jing Su, and Ping Qian, Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 507-515. https://doi.org/10.1007/s12613-019-1758-0 |
Hai-you Huang E-mail: huanghy@mater.ustb.edu.cn
[1] |
D.W. Zhang, Z. Li, and H.B. Huang, New Mg2Si based alloy for automobile engine cylinder liner, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 26(2011), No. 4, p. 797.
|
[2] |
B.L. Mordike and T. Ebert, Magnesium:Properties-applications-potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.
|
[3] |
M. Riffel and J. Schilz, Mechanical alloying of Mg2Si, Scripta Metall. Mater., 32(1995), No. 12, p. 1951.
|
[4] |
M. Yoshinaga, T. Iida, M. Noda, T. Endo, and Y. Takanashi, Bulk crystal growth of Mg2Si by the vertical Bridgman method, Thin Solid Films, 461(2004), No. 1, p. 86.
|
[5] |
H. Tatsuoka, N. Takagi, S. Okaya, Y. Sato, T. Inaba, T. Ohishi, A. Yamamoto, T. Matsuyama, and H. Kuwabara, Microstructures of semiconducting silicide layers grown by novel growth techniques, Thin Solid Films, 461(2004), No. 1, p. 57.
|
[6] |
K.K.A. Kumar, A. Viswanath, U.T.S. Pillai, B.C. Pai, and M. Chakraborty, Changes in solidification morphology of Mg-Si alloys by Ca additions, Trans. Indian Inst. Met., 65(2012), No. 6, p. 695.
|
[7] |
S. Battiston, S. Fiameni, M. Saleemi, S. Boldrini, A. Famengo, F. Agresti, M. Stingaciu, M.S. Toprak, M. Fabrizio, and S. Barison, Synthesis and characterization of Al-doped Mg2Si thermoelectric materials, J. Electron. Mater., 42(2013), No. 7, p. 1956.
|
[8] |
G.H. Li, H.S. Gill, and R.A. Varin, Magnesium silicide intermetallic alloys, Metall. Trans. A, 24(1993), No. 11, p. 2383.
|
[9] |
Y.L. Yue, Y.S. Gong, H.T. Wu, C.B. Wang, and L.M. Zhang, Fabrication and mechanical properties of TiC/TiAl composites, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 19(2004), No. 1, p. 1.
|
[10] |
X.H. Qu, B.Y. Huang, and C.M. Lei, Room temperature brittleness and improvement of TiAl orderd alloy, Rare Met., 17(1993), No. 4, p. 295.
|
[11] |
S.Q. Chen, X.H. Qu, C.M. Lei, and B.Y. Huang, Room temperature mechanical properties of ordered TiAl+La alloys, Acta Metall. Sin., 30(1994), No. 1, p. 20.
|
[12] |
K. Kaur and R. Kumar, Electronic and thermoelectric properties of Al doped Mg2Si material:DFT study, Mater. Today: Proc., 3(2016), No. 6, p. 1785.
|
[13] |
N. Hirayama, T. Iida, H. Funashima, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada, First-principles study on structural and thermoelectric properties of Al-and Sb-doped Mg2Si, J. Electron. Mater., 44(2015), No. 6, p. 1656.
|
[14] |
W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140(1965), No. 4A, p. A1133.
|
[15] |
G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B, 48(1993), No. 17, p. 13115.
|
[16] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169.
|
[17] |
J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865.
|
[18] |
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Erratum:Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 48(1993), No. 7, p. 4978.
|
[19] |
P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953.
|
[20] |
H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188.
|
[21] |
J. Tani and H. Kido, First-principles and experimental studies of impurity doping into Mg2Si, Intermetallics, 16(2008), No. 3, p. 418.
|
[22] |
W. Xiong, X.Y. Qin, M.G. Kong, and C. Li, Synthesis and properties of bulk nanocrystalline Mg2Si through ball-milling and reactive hot-pressing, Trans. Nonferrous Met. Soc. China, 16(2006), No. 5, p. 987.
|
[23] |
C. Li, Y.P. Wu, H. Li, Y.Y. Wu, and X.F. Liu, Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys, Mater. Sci. Eng. A, 528(2010), No. 2, p. 573.
|
[24] |
A. Viat, G. Guillonneau, S. Fouvry, G. Kermouche, S. Sao Joao, J. Wehrs, J. Michler, and J.F. Henne, Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures, Wear, 392-393(2017), p. 60.
|
[25] |
S.F. Pugh, XCⅡ. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London Edinburgh Dublin Philos. Mag. J. Sci., 45(1954), No. 367, p. 823.
|
[26] |
G.V. Sin'Ko and N. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys.:Condens. Matter, 14(2002), No. 29, p. 6989.
|
[27] |
W. Voigt, Lehrbuch der Kristallphysik, Springer, Wiesbaden, 1966.
|
[28] |
A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals, Z. Angew. Math. Mech., 9(1929), p. 49.
|
[29] |
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A, 65(1952), No. 5, p. 349.
|
[30] |
R. Hill, Elastic properties of reinforced solids:Some theoretical principles, J. Mech. Phys. Solids, 11(1963), No. 5, p. 357.
|
[31] |
R.D. Schmidt, E.D. Case, J. Giles, J.E. Ni, and T.P. Hogan, Room-temperature mechanical properties and slow crack growth behavior of Mg2Si thermoelectric materials, J. Electron. Mater., 41(2012), No. 6, p. 1210.
|