Cite this article as: |
N. Dandapat and S. Ghosh, Development of non-shrinkable ceramic composites for use in high-power microwave tubes, Int. J. Miner. Metall. Mater., 26(2019), No. 4, pp. 516-522. https://doi.org/10.1007/s12613-019-1759-z |
S. Ghosh E-mail: sumana@cgcri.res.in
[1] |
L. Wolverton, J.O. Tarter, Thermal, R.E. Eitel, M. Weisenberger, and C. Dowden, Properties of alumina cathode heater potting materials,[in] International Vacuum Electronics Conference (IVEC), IEEE International, USA, 2010, p. 165.
|
[2] |
R.B. True, M.F. Kirshner, L. Turek, G.R. Good, R.J. Hanse, T.M. Bemis, and R.J. Bartkowski, Dispenser cathode high power gridded klystron gun,[in] International Vacuum Electronics Conference (IVEC), IEEE International, USA, 2004, p. 328.
|
[3] |
T.J. Grant and L.R. Falce, Impact of dispenser cathode thickness on useful operating life, [in] International Vacuum Electronics Conference (IVEC), IEEE International, USA, 2004, p. 305.
|
[4] |
V.B. Shields, Applications of silicon carbide for high temperature electronics and sensors, NASA Jet Propulsion Laboratory, Tech Briefs, 20(1996), p. 55.
|
[5] |
P. Swartzentruber, M. Collier, R. Dewees, W. Epperson, C. Poole, B. Rupp, D. Bowling, E. Fadde, A. Floyd, P. Rottmann, R. Wilson, T.J. Balk, S. Roberts, J. Tarter, and M. Effgen, Alternative ceramic potting materials for dispenser cathodes,[in] International Vacuum Electronics Conference (IVEC), IEEE International, USA, 2012, p. 483.
|
[6] |
R.K. Barik, A. Bera, R.S. Raju, A.K. Tanwar, I.K. Baek, S.H. Min, O.J. Kwon, M.A. Sattorov, K.W. Lee, and G.S. Park, Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application, Appl. Surf. Sci., 276(2013), p. 817.
|
[7] |
R. Bhattacharya, H. Khatun, N.K. Singh, U. Singh, and A.K. Sinha, Design of cathode heater assembly for high power gyrotron, Frequenz, 67(2013), No. 5-6, p. 163.
|
[8] |
D. Pedrini, T. Misuri, F. Paganucci, and M. Andrenucci, Development of hollow cathodes for space electric propulsion at Sitael, Aerospace, 4(2017), No. 2, p. 26.
|
[9] |
L. Ives, G. Miram, M. Read, M. Mizuhara, P. Borchard, L. Falce, and K. Gunther, Development of improved cathodes for high power RF sources,[in] Proceedings of the Particle Accelerator Conference, IEEE International, USA, 2003, p. 1113.
|
[10] |
C.D. Marchewka, Non-Uniform Emission Studies of a Magnetron Injection Gun [Dissertation], Massachusetts Institute of Technology (MIT), USA, 2006, p. 1.
|
[11] |
A.S. Gilmour, Jr., Microwave Tubes, Artech House, Boston, 1986, p. 733.
|
[12] |
D.F. Simmons, C.M. Fortgang, and D.B. Holtkamp, Using multispectral imaging to measure temperature profiles and emissivity of large thermionic dispenser cathodes, Rev. Sci. Instrum., 76(2005), No. 4, art. No. 044901.
|
[13] |
D.J. Kaczynski and K. A. Walsh, Beryllium Oxide,[in] Conference of Raw Materials for Advanced and Engineered Ceramics, 6(1985), No. 9-10, p. 1261.
|
[14] |
T.V. Thamaraiselvi and S.S. Rajeswari, Biological evaluation of bioceramic materials-A review trends, Trends Biomater. Artif. Organs, 18(2004), No. 1, p. 9.
|
[15] |
O.S.S. Lamba, S.C. Nangru, L.M. Joshi, A. Sharma, V.P. Singh, and N.C. Gupta, Choice of alumina ceramics for 5MW pulsed power klystron, Indian J. Eng. Mater. S., 7(2000), No. 5, p. 443.
|
[16] |
S. Roberts, Sources of temperature variance in dispenser cathodes,[in] International Vacuum Electronics Conference (IVEC), IEEE International, USA, 2004, p. 299.
|
[17] |
C.W. Park and D.Y. Yoon, Effects of SiO2, CaO2, and MgO additions on the grain growth of alumina, J. Am. Ceram. Soc., 83(2000), No. 10, p. 2605.
|
[18] |
K.S. Pal, S. Ghosh, N. Dandapat, S. Datta, D. Basu, and R.S. Raju, Development of suitable potting material for dispenser cathodes of a high power microwave tube, Mater. Sci. Eng. B, 177(2012), No. 2, p. 228.
|
[19] |
P. Swartzentruber, M. Collier, R. DeWees, W. Epperson, C. Poole, B. Rupp, D. Bowling, E. Fadde, A. Floyd, P. Rottmann, R. Wilson, T.J. Balk, S. Roberts, J. Tarter, and M. Effgen, Alternative ceramic potting materials for dispenser cathodes,[in] International Vacuum Electronics Conference (IVEC), 2012, IEEE International, Monterey, CA, USA, p. 483.
|
[20] |
A. Kisko, J. Talonen, D.A. Porter, and L.P. Karjalainen, Effect of Nb microalloying on reversion and grain growth in a high-Mn 204Cu austenitic stainless steel, ISIJ Int., 55(2015), No. 10, p. 2217.
|
[21] |
S. Miao, Z.M. Xie, L.F. Zeng, T. Zhang, X.P. Wang, Q.F. Fang, and C.S. Liu, Mechanical properties, thermal stability and microstructure of fine-grained W-0.5wt% TaC alloys fabricated by an optimized multi-step process, Nucl. Mater. Energy, 13(2017), p. 12.
|
[22] |
G.E. Jr., Oxidation behavior of silicon carbide, J. Am. Ceram. Soc., 41(1958), No. 9, p. 347.
|
[23] |
L.U.J.T. Ogbuji and M. Singh, High-temperature oxidation behavior of reaction-formed silicon carbide ceramics, J. Mater. Res., 10(1995), No. 12, p. 3232.
|
[24] |
A. Theerapapvisetpong, S. Jiemsirilers, P. Thavorniti, and R. Conradt, Barium-free glass-ceramic sealants from the system CaO-MgO-B2O3-Al2O3-SiO2 for application in the SOFC, Mater. Sci. Forum, 695(2011), p. 1.
|