Cite this article as: |
Hamid Sazegaran and Milad Hojati, Effects of copper content on microstructure and mechanical properties of open-cell steel foams, Int. J. Miner. Metall. Mater., 26(2019), No. 5, pp. 588-596. https://doi.org/10.1007/s12613-019-1767-z |
Hamid Sazegaran E-mail: h.sazegaran@qiet.ac.ir
[1] |
J. Banhart, Manufacture, characterization and application of cellular metals and metal foams, Prog. Mater. Sci., 46(2001), No. 6, p. 559.
|
[2] |
M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal Foams:A Design Guide, Butterworth-Heinemann, 2000, p. 21.
|
[3] |
H.P. Degischer and B. Kriszt, Handbook of Cellular Metals:Production, Processing and Applications, Weinheim:Wiley-VCH/Verlag GmbH, 2002, p. 67.
|
[4] |
J. Baumeister, J. Banhart, and M. Weber, Aluminum foams for transport industry, Mater. Des., 18(1997), No. 4-6, p. 217.
|
[5] |
K. Boomsma, D. Poulikakos, and F. Zwick, Metal foams as compact high performance heat exchangers, Mech. Mater., 35(2003), No. 12, p. 1161.
|
[6] |
H.W. Song, Z.J. Fan, G. Yu, Q.C. Wang, and A. Tobota, Partition energy absorption of axially crushed aluminum foam-filled hat sections, Int. J. Solids. Struct., 42(2005), No. 9-10, p. 2575.
|
[7] |
C. Motz and R. Pippan, Deformation behaviour of closed-cell aluminium foams in tension, Acta. Mater., 49(2001), No. 13, p. 2463.
|
[8] |
S.V. Raj, L.J. Ghosn, B.A. Lerch, M. Hebsur, L.M. Cosgriff, and J. Fedor, Mechanical properties of 17-4PH stainless steel foam panels, Mater. Sci. Eng. A, 456(2007), No. 1-2, p. 305.
|
[9] |
J.Y. Seo, K.Y. Lee, and D.S. Shim, Effects of process parameters on properties of porous foams formed by laser-assisted melting of steel powder (AISI P21)/foaming agent (ZrH2) mixture, Opt. Laser. Technol., 98(2018), p. 326.
|
[10] |
B.H. Smith, S. Szyniszewski, J.F. Hajjar, B.W. Schafer, and S.R. Arwade, Steel foam for structures:A review of applications, manufacturing and material properties, J. Constr. Steel. Res., 71(2012), p. 1.
|
[11] |
C. Park and S.R. Nutt, Effects of process parameters on steel foam synthesis, Mater. Sci. Eng. A, 297(2001), No. 1-2, p. 62.
|
[12] |
C. Park and S.R. Nutt, PM synthesis and properties of steel foams, Mater. Sci. Eng. A, 288(2000), No. 1, p. 111.
|
[13] |
M.H. Golabgir, R. Ebrahimi-Kahrizsangi, O. Torabi, H. Tajizadegan, and A. Jamshidi, Fabrication and evaluation of oxidation resistance performance of open-celled Fe (Al) foam by space-holder technique, Adv. Powder Technol., 25(2014), No. 3, p. 960.
|
[14] |
N. Bekoz and E. Oktay, Effects of carbamide shape and content on processing and properties of steel foams, J. Mater. Process. Technol., 212(2012), No. 10, p. 2109.
|
[15] |
N. Bekoz and E. Oktay, Effect of heat treatment on mechanical properties of low alloy steel foams, Mater. Des., 51(2013), p. 212.
|
[16] |
M. Mirzaei and M.H, Paydar, A novel process for manufacturing porous 316L stainless steel with uniform pore distribution, Mater. Des., 121(2017), p. 442.
|
[17] |
S. Guarino, M. Barletta, S. Pezzola, and S. Vesco, Manufacturing of steel foams by Slip Reaction Foam Sintering (SRFS), Mater. Des., 40(2012), p. 268.
|
[18] |
M. Sharma, G.K. Gupta, O.P. Modi, B.K. Prasad, and A.K. Gupta, Titanium foam through powder metallurgy route using acicular urea particles as space holder, Mater. Lett., 65(2011), No. 21-22, p. 3199.
|
[19] |
T. Shimizu, K. Matsuzaki, H. Nagai, and N. Kanetake, Production of high porosity metal foams using EPS beads as space holders, Mater. Sci. Eng. A, 558(2012), p. 343.
|
[20] |
J. Kadkhodapour, H. Montazerian, M. Samadi, S. Schmauder, and A.A. Mehrizi, Plastic deformation and compressive mechanical properties of hollow sphere aluminum foams produced by space holder technique, Mater. Des., 83(2015), p. 352.
|
[21] |
E.E. Aşik andŞ. Bor, Fatigue behavior of Ti-6Al-4V foams processed by magnesium space holder technique, Mater. Sci. Eng. A, 621(2015), p. 157.
|
[22] |
G.Z. Jia, Y. Hou, C.X. Chen, J.L. Niu, H. Zhang, H. Huang, M.P. Xiong, and G.Y. Yuan, Precise fabrication of open porous Mg scaffolds using NaCl templates:Relationship between space holder particles, pore characteristics and mechanical behavior, Mater. Des., 140(2018), p. 106.
|
[23] |
B. Xie, Y.Z. Fan, T.Z. Mu, and B. Deng, Fabrication and energy absorption properties of titanium foam with CaCl2 as a space holder, Mater. Sci. Eng. A, 708(2017), p. 419.
|
[24] |
N. Takata, K. Uematsu, and M. Kobashi, Compressive properties of porous Ti-Al alloys fabricated by reaction synthesis using a space holder powder, Mater. Sci. Eng. A, 697(2017), p. 66.
|
[25] |
A. Noorsyakirah, M. Mazlan, O.M. Afian, M.A. Aswad, S.M. Jabir, M.Z. Nurazilah, N.H.M. Afiq, M. Bakar, A.J.M. Nizam, O.A. Zahid, and M.H.M. Bakri, Application of potassium carbonate as space holder for metal injection molding process of open pore copper foam, Procedia. Chem., 19(2016), p. 552.
|
[26] |
B. Jiang, N.Q. Zhao, C.S. Shi, and J.J. Li, Processing of open cell aluminum foams with tailored porous morphology, Scripta Mater., 53(2005), No. 6, p. 781.
|
[27] |
A. Mansourighasri, N. Muhamad, and A.B. Sulong, Processing titanium foams using tapioca starch as a space holder, J. Mater. Process. Technol., 212(2012), No. 1, p. 83.
|
[28] |
H.I. Bakan, A novel water leaching and sintering process for manufacturing highly porous stainless steel, Scripta Mater., 55(2006), No. 2, p. 203.
|
[29] |
M. Bram, C. Stiller, H.P. Buchkremer, D. Stöver, and H. Baur, High porosity titanium, stainless steel and superalloy parts, Adv. Eng. Mater., 2(2000), No. 4, p. 196.
|
[30] |
H.Ö. Gülsoy and R.M. German, Sintered foams from precipitation hardened stainless steel powder, Powder Metall., 51(2008), No. 4, p. 350.
|
[31] |
I. Mutlu and E. Oktay, Processing and properties of highly porous 17-4 PH stainless steel, Powder Metall. Met. Ceram., 50(2011), No. 1-2, p. 73.
|
[32] |
I. Mutlu and E. Oktay, Production and aging of highly porous 17-4 PH stainless steel, J. Porous Mater., 19(2011), No. 4, p. 433.
|
[33] |
D.P. Mondal, H. Jain, S. Das, and A.K. Jha, Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder, Mater. Des., 88(2015), p. 430.
|
[34] |
N. Bekoz and E. Oktay, High temperature mechanical properties of low alloy steel foams produced by powder metallurgy, Mater. Des., 53(2014), p. 482.
|
[35] |
N. Michailidis, F. Stergioudi, A. Tsouknidas, and E. Pavlidou, Compressive response of Al foams produced via a powder sintering process based on a leachable space-holder material, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1662.
|
[36] |
R.M. German, P. Suri, and S.J. Park, Review:liquid phase sintering, J. Mater. Sci., 44(2009), No. 1, p. 1.
|
[37] |
M.W. Wu, W.Z. Cai, Z.J. Lin, and S.H. Chang, Liquid phase sintering mechanism and densification behavior of boron-alloyed Fe-Ni-Mo-C-B powder metallurgy steel, Mater. Des., 133(2017), p. 536.
|
[38] |
A. Simchi, Effect of C and Cu addition on the densification and microstructure of iron powder in direct laser sintering process, Mater. Lett., 62(2008), No. 17-18, p. 2840.
|
[39] |
I. Metinöz, I. Cristofolini, I. Pahl, A. DeNicolo, P. Marconi, and A. Molinari, Theoretical and experimental study of the contact fatigue behavior of a Mo-Cu steel produced by powder metallurgy, Mater. Sci. Eng. A, 614(2014), p. 81.
|
[40] |
W.D. Wong-Ángel, L. Téllez-Jurado, J.F. Chávez-Alcalá, E. Chavira-Martínez, and V.F. Verduzco-Cedeño, Effect of copper on the mechanical properties of alloys formed by powder metallurgy, Mater. Des., 58(2014), p. 12.
|
[41] |
U. Ramamurty and A. Paul, Variability in mechanical properties of a metal foam, Acta Mater., 52(2004), No. 4, p. 869.
|
[42] |
Y.L. Mu, G.C. Yao, and H.J. Luo, Effect of cell shape anisotropy on the compressive behavior of closed-cell aluminum foams, Mater. Des., 31(2010), No. 3, p. 1567.
|
[43] |
K. Essa, P. Jamshidi, J. Zou, M.M. Attallah, and H. Hassanin, Porosity control in 316L stainless steel using cold and hot isostatic pressing, Mater. Des., 138(2018), p. 21.
|
[44] |
H. Bafti and A. Habibolahzadeh, Production of aluminum foam by spherical carbamide space holder technique-processing parameters, Mater. Des., 31(2010), No. 9, p. 4122.
|
[45] |
Y.Y. Zhao, F.S. Han, and T. Fung, Optimisation of compaction and liquid-state sintering in sintering and dissolution process for manufacturing Al foams, Mater. Sci. Eng. A, 364(2004), No. 1-2, p. 117.
|