Yu Shao, Li-ming Yu, Yong-chang Liu, Zong-qing Ma, Hui-jun Li,  and Jie-feng Wu, Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization, Int. J. Miner. Metall. Mater., 26(2019), No. 5, pp. 597-610. https://doi.org/10.1007/s12613-019-1768-y
Cite this article as:
Yu Shao, Li-ming Yu, Yong-chang Liu, Zong-qing Ma, Hui-jun Li,  and Jie-feng Wu, Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization, Int. J. Miner. Metall. Mater., 26(2019), No. 5, pp. 597-610. https://doi.org/10.1007/s12613-019-1768-y
Research Article

Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization

+ Author Affiliations
  • Corresponding authors:

    Li-ming Yu    E-mail: lmyu@tju.edu.cn

    Yong-chang Liu    E-mail: ycliu@tju.edu.cn

  • Received: 21 August 2018Revised: 19 December 2018Accepted: 27 December 2018
  • The hot deformation behaviors of a 9Cr oxide dispersion-strengthened (9Cr-ODS) steel fabricated by mechanical alloying and hot isostatic pressing (HIP) were investigated. Hot compression deformation experiments were conducted on a Gleeble 3500 simulator in a temperature range of 950-1100℃ and strain rate range of 0.001-1 s-1. The constitutive equation that can accurately describe the relationship between the rheological stress and the strain rate of the 9Cr-ODS steel was established, and the deformation activation energy was calculated as 780.817 kJ/mol according to the data obtained. The processing maps of 9Cr-ODS in the strain range of 0.1-0.6 were also developed. The results show that the region with high power dissipation efficiency corresponds to a completely recrystallized structure. The optimal processing conditions were determined as a temperature range of 1000-1050℃ with strain rate between 0.003 and 0.01 s-1.
  • loading
  • [1]
    S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 488(2012), No. 7411, p. 294.
    [2]
    H.Q. Dong, L.M. Yu, Y.C. Liu, C.X. Liu, H.J. Li, and J.F. Wu, Effect of hafnium addition on the microstructure and tensile properties of aluminum added high-Cr ODS steels, J. Alloys Compd., 702(2017), p. 538.
    [3]
    H. Xu, Z. Lu, D. Wang, and C. Liu, Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition, Nucl. Eng. Technol., 49(2017), No. 1, p. 178.
    [4]
    G.M. Zhang, Z.J. Zhou, K. Mo, P.H. Wang, Y.B. Miao, S.F. Li, M. Wang, X. Liu, M.Q. Gong, J. Almer, and J.F. Stubbins, The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy, J. Alloys Compd., 648(2015), p. 223.
    [5]
    Q. Zhao, L.M. Yu, Y.C. Liu, Y. Huang, Z.Q. Ma, and H.J. Li, Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1156.
    [6]
    S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, and M. Fujiwara, Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, J. Nucl. Mater., 204(1993), p. 65.
    [7]
    C. Suryanarayana and N. Al-Aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci., 58(2013), No. 4, p. 383.
    [8]
    S. Ukai and M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater., 307-311(2002), p. 749.
    [9]
    G.R. Odette, M.J. Alinger, and B.D. Wirth, Recent developments in irradiation-resistant steels, Ann. Rev. Mater. Res., 38(2008), p. 471.
    [10]
    E.J. Mittemeijer, Fundamentals of Materials Science, Springer Berlin, Heidelberg, 2011, p. 101.
    [11]
    Y. Sugino, S. Ukai, N. Oono, S. Hayashi, T. Kaito, S. Ohtsuka, H. Masuda, S. Taniguchi, and E. Sato, High temperature deformation mechanism of 15CrODS ferritic steels at cold-rolled and recrystallized conditions, J. Nucl. Mater., 466(2015), p. 653.
    [12]
    E. Aydogan, O. El-Atwani, S. Takajo, S.C. Vogel, and S.A. Maloy, High temperature microstructural stability and recrystallization mechanisms in 14YWT alloys, Acta Mater., 148(2018), p. 467.
    [13]
    Y. Sugino, S. Ukai, B. Leng, N. Oono, S. Hayashi, T. Kaito, and S. Ohtsuka, Grain boundary sliding at high temperature deformation in cold-rolled ODS ferritic steels, J. Nucl. Mater., 452(2014), No. 1-3, p. 628.
    [14]
    Z.B. Zhang and W.G. Pantheon, Response of oxide nanoparticles in an oxide dispersion strengthened steel to dynamic plastic deformation, Acta Mater., 149(2018), p. 235.
    [15]
    Y.C. Lin and X.M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des., 32(2011), No. 4, p. 1733.
    [16]
    S.B. Davenport, N.J. Silk, C.N. Sparks, and C.M. Sellars, Development of constitutive equations for modelling of hot rolling, Mater. Sci. Technol., 16(2000), No. 5, p. 539.
    [17]
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of dynamic material behavior in hot deformation:Forging of Ti-6242, Metall. Trans. A, 15(1984), No. 10, p. 1883.
    [18]
    H. Zhang, H.J. Li, Q.Y. Guo, Y.C. Liu, and L.M. Yu, Hot deformation behavior of Ti-22Al-25Nb alloy by processing maps and kinetic analysis, J. Mater. Res., 31(2016), No. 12, p. 1764.
    [19]
    Z.H. Yao, S.C. Wu, J.X. Dong, Q.Y. Yu, M.C. Zhang, and G.W. Han, Constitutive behavior and processing maps of low-expansion GH909 superalloy, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 432.
    [20]
    S. Huang, L. Wang, X.T. Lian, G.P. Zhao, F.F. Li, and X.M. Zhang, Hot deformation map and its application of GH4706 alloy, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 462.
    [21]
    J.Q. Zhang, H.S. Di, K. Mao, X.Y. Wang, Z.J. Han, and T.J. Ma, Processing maps for hot deformation of a high-Mn TWIP steel:A comparative study of various criteria based on dynamic materials model, Mater. Sci. Eng. A, 587(2013), p. 110.
    [22]
    Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, Y. Huang, H.J. Li, and H.P. Wang, Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression, J. Alloys Compd., 712(2017), p. 687.
    [23]
    Z.Y. Ding, Q.D. Hu, L. Zeng, and J.G. Li, Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains, Int. J. Miner. Metall. Mater., 23(2016), No. 11, p. 1275.
    [24]
    R.H. Zhang, Z.A. Zhou, M.W. Guo, J.J. Qi, S.H. Sun, and W.T. Fu, Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1043.
    [25]
    X.H. Yue, C.F. Liu, H.H. Liu, S.F. Xiao, Z.H. Tang, and T.Tang, Effects of hot compression deformation temperature on the microstructure and properties of Al-Zr-La alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 236.
    [26]
    M. Yamamoto, S. Ukai, S. Hayashi, T. Kaito, and S. Ohtsuka, Formation of residual ferrite in 9Cr-ODS ferritic steels, Mater. Sci. Eng. A, 527(2010), No. 16-17, p. 4418.
    [27]
    H. Sakasegawa, M. Tamura, S. Ohtsuka, S. Ukai, H. Tanigawa, A. Kohyama, and M. Fujiwara, Precipitation behavior of oxide particles in mechanically alloyed powder of oxide-dispersion-strengthened steel, J. Alloys Compd., 452(2008), No. 1, p. 2.
    [28]
    K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee, Stacking fault energy and plastic deformation of fully austenitic high manganese steels, Mater. Sci. Eng. A, 527(2010), No. 16-17, p. 3651.
    [29]
    X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation, Mater. Des., 57(2014), p. 568.
    [30]
    A. Seeger, J. Diehl, S. Mader, and H. Rebstock, Work-hardening and work-softening of face-centred cubic metal crystals, Philos. Mag. A, 2(1957), No. 15, p. 323.
    [31]
    J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and structure under hot-working conditions, Metall. Rev., 14(1969), No. 1, p. 1.
    [32]
    M.F. Abbod, C.M. Sellars, A. Tanaka. D.A. Linkens, and M. Mahfouf, Effect of changing strain rate on flow stress during hot deformation of Type 316L stainless steel, Mater. Sci. Eng. A, 491(2008), No. 1-2, p. 290.
    [33]
    C. Capdevila, G. Pimentel, M.M. Aranda, R. Rementeria, K. Dawson, E. Urones-Garrote, G.J. Tatlock, and M.K. Miller, Role of Y-Al oxides during extended recovery process of a ferritic ODS alloy, JOM, 67(2015), No. 10, p. 2208.
    [34]
    W.F. Zhang, W. Sha, W. Yan, W. Wang, Y.Y. Shan, and K. Yang, Analysis of deformation behavior and workability of advanced 9Cr-Nb-V ferritic heat resistant steels, Mater. Sci. Eng. A, 604(2014), p. 207.
    [35]
    H.T. Zhao, G.Q. Liu, and L. Xu, Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel, Mater. Sci. Eng. A, 559(2013), p. 262.
    [36]
    S.F. Medina and C.A. Hernandez, General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels, Acta Mater., 44(1996), No. 1, p. 137.
    [37]
    J. Dong, C. Li, C.X. Liu, Y. Huang, L.M. Yu, H.J. Li, and Y.C. Liu, Hot deformation behavior and microstructural evolution of Nb-V-Ti microalloyed ultra-high strength steel, J. Mater. Res., 32(2017), No. 19, p. 3777.
    [38]
    C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 15(1944), No. 1, p. 22.
    [39]
    R. Raj, Development of a processing map for use in warm-forming and hot-forming processes, Metall. Trans. A, 12(1981), No. 6, p. 1089.
    [40]
    Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of hot deformation for microstructural control, Int. Mater. Rev., 43(1998), No. 6, p. 243.
    [41]
    P.Y. Zhao, Y.Z. Wang, and S.R. Niezgoda, Microstructural and micromechanical evolution during dynamic recrystallization, Int. J. Plast., 100(2017), p. 52.
    [42]
    H. Wu, S.P. Wen, H. Huang, X.L. Wu, K.Y. Gao, W. Wang, and Z.R. Nie, Hot deformation behavior and constitutive equation of a new type Al-Zn-Mg-Er-Zr alloy during isothermal compression, Mater. Sci. Eng. A, 651(2016), p. 415.
    [43]
    D.X. Wen, Y.C. Lin, H.B. Li, X.M. Chen, J. Deng, and L.T. Li, Hot deformation behavior and processing map of a typical Ni-based superalloy, Mater. Sci. Eng. A, 591(2014), p. 183.
    [44]
    H. Farnoush, A. Momeni, K. Dehghani, J. Aghazadeh Mohandesi, and H. Keshmiri, Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases, Mater. Des., 31(2010), No. 1, p. 220.
    [45]
    S.L. Sun, M.G. Zhang, and W.W. He, Hot deformation behavior and hot processing map of P92 steel, Adv. Mater. Res., 97-101(2010), p. 290.
    [46]
    A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater., 49(2001), No. 7, p. 1199.
    [47]
    S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah, Strain rate dependent microstructural evolution during hot deformation of a hot isostatically processed nickel base superalloy, J. Alloys Compd., 681(2016), p. 28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(589) PDF Downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return