Keemi Lim, Wen Shyang Chow,  and Swee Yong Pung, Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 787-795. https://doi.org/10.1007/s12613-019-1781-1
Cite this article as:
Keemi Lim, Wen Shyang Chow,  and Swee Yong Pung, Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 787-795. https://doi.org/10.1007/s12613-019-1781-1
Research Article

Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach

+ Author Affiliations
  • Received: 1 August 2018Revised: 1 November 2018Accepted: 8 November 2018
  • The aim of this study was to synthesize and evaluate the thermal properties and ultraviolet (UV) resistance of zinc oxide-functionalized halloysite nanotubes (HNT-ZnO). The HNT-ZnO was synthesized using a facile solvent-free route. The properties of the HNT-ZnO nanofillers were characterized using zeta-potential measurement, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The immobilization of ZnO nanoparticles onto HNT is feasible even at the lowest mass ratio of HNT/ZnO. The TGA results indicate that the thermal stability of the HNT-ZnO nanofillers is higher than that of the HNT. Furthermore, UV-Vis diffuse reflectance spectroscopy (UV-DRS) results show that the HNT-ZnO achieve a total reflectance as high as approximately 87.5% in the UV region, as compare with 66.9% for the HNT. In summary, the immobilization of ZnO onto HNT is a viable approach for increasing the thermal stability and improving the UV shielding of HNT.
  • loading
  • [1]
    E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, and B. Delvaux, Halloysite clay minerals – a review, Clay Miner., 40(2005), No. 4, p. 383.
    [2]
    L. Guimarães, A.N. Enyashin, G. Seifert, and H.A. Duarte, Structural, electronic, and mechanical properties of single-walled halloysite nanotube models, J. Phys. Chem. C, 114(2010), No. 26, p. 11358.
    [3]
    M.X. Liu, Z.X. Jia, D.M. Jia, and C.R. Zhou, Recent advance in research on halloysite nanotubes-polymer nanocomposite, Prog. Polym. Sci., 39(2014), No. 8, p. 1498.
    [4]
    K.A. Zahidah, S. Kakooei, M.C. Ismail, and P.B. Raja, Halloysite nanotubes as nanocontainer for smart coating application: A review, Prog. Org. Coat., 111(2017), p. 175.
    [5]
    R. Kamble, M. Ghag, S. Gaikawad, and B.K. Panda, Halloysite nanotubes and applications: A review, J. Adv. Sci. Res., 3(2012), No. 2, p. 25.
    [6]
    T.S. Gaaz, A.B. Sulong, A.A.H. Kadhum, A.A. Al-Amiery, M.H. Nassir, and A.H. Jaaz, The impact of halloysite on the thermo-mechanical properties of polymer composites, Molecules, 22(2017), No. 5, art. No. 838.
    [7]
    E. Abdullayev and Y. Lvov, Halloysite clay nanotubes for controlled release of protective agents, J. Nanosci. Nanotechnol., 11(2011), No. 11, p. 10007.
    [8]
    P. Yuan, D.Y. Tan, and F. Annabi-Bergaya, Properties and applications of halloysite nanotubes: recent research advances and future prospects, Appl. Clay Sci., 112-113(2015), p. 75.
    [9]
    Y.T. Yang, Y. Chen, F. Leng, L. Huang, Z.J. Wang, and W.Q. Tian, Recent advances on surface modification of halloysite nanotubes for multifunctional applications, Appl. Sci., 7(2017), No. 12, art. No. 1215.
    [10]
    D. Rawtani and Y.K. Agrawal, Multifarious applications of halloysite nanotubes: A review, Rev. Adv. Mater. Sci., 30(2012), No. 3, p. 282.
    [11]
    M. Kotal and A.K. Bhowmick, Polymer nanocomposites from modified clays: Recent advances and challenges, Prog. Polym. Sci., 51(2015), p. 127.
    [12]
    A. Bratovčić, A. Odobašić, S. Ćatić, and I. Šestan, Application of polymer nanocomposite materials in food packaging, Croat. J. Food Sci. Technol., 7(2015), No. 2, p. 86.
    [13]
    S. Karimi and A. Ataie, Characterization of mechanothermally processed nanostructured ZnO, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 588.
    [14]
    W. Chamorro, J. Ghanbaja, Y. Battie, A.E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films, J. Phys. Chem. C, 120(2016), p. 29405.
    [15]
    S. Sabir, M. Arshad, and S.K. Chaudhari, Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications, Sci. World J., 2014(2014), art. No. 925494.
    [16]
    E.A. Stefanescu, C. Daranga, and C. Stefanescu, Insight into the broad field of polymer nanocomposites: from carbon nanotubes to clay nanoplatelets, via metal nanoparticles, Materials, 2(2009), No. 4, p. 2095.
    [17]
    P. Uikey and K. Vishwakarma, Review of zinc oxide (ZnO) nanoparticles applications and properties, Int. J. Emerg. Technol. Comput. Sci. Electron., 21(2016), No. 2, p. 239.
    [18]
    X. Huang, M. Wang, L.D. Shao, M.G. Willinger, C.S. Lee, and X.M. Meng, Polarity-free epitaxial growth of heterostructured ZnO/ZnS core/shell nanobelts, J. Phys. Chem. Lett., 4(2013), No. 5, p. 740.
    [19]
    J.Z. Li, M.J. Zhou, Z.F. Ye, H.Q. Wang, C.C. Ma, P.W. Huo, and Y.S. Yan, Enhanced photocatalytic activity of g-C3N4–ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation, RSC Adv., 5(2015), No. 111, p. 91177.
    [20]
    H.X. Peng, X.H. Liu, W. Tang, and R.Z. Ma, Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties, Sci. Rep., 7(2017), art. No. 2250.
    [21]
    B.Y.K. Ho, Development of light-stable PVC stabilizer systems for rigid weatherable applications, J. Vinyl Tech., 6(1984), No. 4, p. 162.
    [22]
    A.L. Andrady, S.H. Hamid, X. Hu, and A. Torikai, Effects of increased solar ultraviolet radiation on materials, J. Photochem. Photobiol. B, 46(1998), No. 1-3, p. 96.
    [23]
    I.N. Gogotov and S.K. Barazov, The effect of ultraviolet light and temperature on the degradation of composite polypropylene, Int. Polym. Sci. Technol., 41(2014), No. 3, p. 55.
    [24]
    J. Tocháček and Z. Vrátníčková, Polymer life-time prediction: The role of temperature in UV accelerated ageing of polypropylene and its copolymers, Polym. Test., 36(2014), p. 82.
    [25]
    Z. Shu, Y. Zhang, J. Ouyang, and H.M. Yang, Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite, Appl. Surf. Sci., 420(2017), No. 135, p. 833.
    [26]
    J. Zhuang and G.R. Yu, Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals, Chemosphere, 49(2002), No. 6, p. 619.
    [27]
    Ö. Açışlı, S. Karaca, and A. Gürses, Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions, Appl. Clay Sci., 142(2017), p. 90.
    [28]
    W. Yu, and H.Q Xie, A review on nanofluids: preparation, stability mechanisms, and applications, J. Nanomater., 2012(2012), art. No. 435873.
    [29]
    T. Meißner, K. Oelschlägel, and A. Potthoff, Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies, Int. Nano Lett., 4(2014), No. 3, art. No. 115.
    [30]
    F.L. Yuan, H. Peng, Y. Yin, Y. Chunlei, and H. Ryu, Preparation of zinc oxide nanoparticles coated with homogeneous Al2O3 layer, Mater. Sci. Eng. B, 122(2005), No. 1, p. 55.
    [31]
    R. Marsalek, Particle size and zeta potential of ZnO, APCBEE Proc., 9(2014), p. 13.
    [32]
    P. Yuan, P.D. Southon, Z.W. Liu, M.E.R. Green, J.M. Hook, S.J. Antill, and C.J. Kepert, Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane, J. Phys. Chem. C, 112(2008), No. 40, p. 15742.
    [33]
    D. Gültekin, M. Alaf, and H. Akbulut, Synthesis and characterization of ZnO nanopowders and ZnO-CNT nanocomposites prepared by chemical precipitation route, Acta Phys. Pol. A, 123(2013), No. 2, p. 274.
    [34]
    J. Sharma, M. Vashishtha, and D.O. Shah, Crystallite size dependence on structural parameters and photocatalytic activity of microemulsion mediated synthesized ZnO nanoparticles annealed at different temperatures, Global J. Sci. Front. Res. B, 14(2014), No. 5, p. 19.
    [35]
    J.T. Kloprogge, Characterisation of halloysite by spectroscopy, Dev. Clay Sci., 7(2016), p. 115.
    [36]
    A.M. Pourrahimi, D. Liu, V. Ström, M.S. Hedenqvist, R.T. Olsson, and U.W. Gedde, Heat treatment of ZnO nanoparticles: new methods to achieve high-purity nanoparticles for high-voltage applications, J. Mater. Chem. A, 3(2015), No. 33, p. 17190.
    [37]
    B.C. Babu and S. Buddhudu, Emission spectra of Tb3+: Zn2SiO4 and Eu3+: Zn2SiO4 sol-gel powder phosphors, J. Spectrocs. Dyn., 4(2014), No. 5, p. 1.
    [38]
    S. Yedurkar, C. Maurya, and P. Mahanwar, Biosynthesis of zinc oxide nanoparticles using Ixora Coccinea leaf extract—A green approach, J. Synth. Theory Appl., 5(2016), p. 1.
    [39]
    H. Sabahi, M. Khorami, A.H. Rezayan, Y. Jafari, and M.H. Karami, Surface functionalization of halloysite nanotubes via curcumin inclusion, Colloids Surf. A, 538(2018), p. 834.
    [40]
    L. Tzounis, S. Herlekar, A. Tzounis, N.D. Charisiou, M. Goula, and M. Stamm, Halloysite nanotubes noncovalently functionalised with SDS anionic surfactant and PS-b-P4VP block copolymer for their effective dispersion in polystyrene as UV-blocking nanocomposite films, J. Nanomater., 2017(2017), art No. 3852310.
    [41]
    A.H. Moharram, S.A. Mansour, M.A. Hussein, and M. Rashad, Direct precipitation and characterization of ZnO nanoparticles, J. Nanomater., 2014(2014), art. No. 716210.
    [42]
    M. Maruthupandy, M. Anand, G. Maduraiveeran, S. Suresh, A.S.H. Beevi, and R.J. Priya, Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires, Adv. Nat. Sci.: Nanosci. Nanotechnol., 7(2016), No. 4, art. No. 045011.
    [43]
    Z.C. Shen, H.J. Zhou, H.Y. Chen, H. Xu, C.H. Feng, and X.H. Zhou, Synthesis of nano-zinc oxide loaded on mesoporous silica by coordination effect and its photocatalytic degradation property of methyl orange, Nanomaterials, 8(2018), No. 5, art. No. 317.
    [44]
    M.S. Ghamsari, S. Alamdari, W. Han, and H.H. Park, Impact of nanostructured thin ZnO film in ultraviolet protection, Int. J. Nanomed., 12(2017), p. 207.
    [45]
    N. Kiomarsipour, R.S. Razavi, K. Ghani, and M. Kioumarsipour, Evaluation of shape and size effects on optical properties of ZnO pigment, Appl. Surf. Sci., 270(2013), p. 33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(659) PDF Downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return