Di-qing Wan, Ying-lin Hu, Shu-ting Ye, Zhu-min Li, Li-li Li,  and Yi Huang, Effect of alloying elements on magnesium alloy damping capacities at room temperature, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 760-765. https://doi.org/10.1007/s12613-019-1789-6
Cite this article as:
Di-qing Wan, Ying-lin Hu, Shu-ting Ye, Zhu-min Li, Li-li Li,  and Yi Huang, Effect of alloying elements on magnesium alloy damping capacities at room temperature, Int. J. Miner. Metall. Mater., 26(2019), No. 6, pp. 760-765. https://doi.org/10.1007/s12613-019-1789-6
Research Article

Effect of alloying elements on magnesium alloy damping capacities at room temperature

+ Author Affiliations
  • Corresponding author:

    Di-qing Wan    E-mail: divadwan@163.com

  • Received: 15 August 2018Revised: 12 November 2018Accepted: 30 November 2018
  • Alloying is a good approach to increasing its strength but leads to a reduction of damping to pure magnesium. Classifying the alloying characteristics of various alloying elements in magnesium alloys and their combined effects on the damping and mechanical properties of magnesium alloys is important. In this paper, the properties of the Mg-0.6wt%X binary alloys were analyzed through strength measurements and dynamic mechanical analysis. The effects of foreign atoms on solid-solution strengthening and dislocation damping were studied comprehensively. The effect of solid solubility on damping capacity can be considered from two perspectives:the effect of single solid-solution atoms on the damping capacities of the alloy, and the effect of solubility on the damping capacities of the alloy. The results provide significant information that is useful in developing high-strength, high-damping magnesium alloys. This study will provide scientific guidance regarding the development of new types of damping magnesium alloys.
  • loading
  • [1]
    Z.L. Zhang, X.Q. Zeng, and W.J. Ding, The influence of heat treatment on damping response of AZ91D magnesium alloy, Mater. Sci. Eng. A, 392(2005), No. 1-2, p. 150.
    [2]
    R. Ma, X.P. Dong, B.S. Yan, S.Q. Chen, Z.B. Li, Z. Pan, H.J. Ling, and Z.T. Fan, Mechanical and damping properties of thermal treated Mg-Zn-Y-Zr alloys reinforced with quasicrystal phase, Mater. Sci. Eng. A, 602(2014), p. 11.
    [3]
    W.Z. Huang, H.J. Luo, Y.L. Mu, H. Lin, and H. Du, Low-frequency damping behavior of closed-cell Mg alloy foams reinforced with SiC particles, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 701.
    [4]
    R. González-Martínez, J. Göken, D. Letzig, K. Steinhoff, and K.U. Kainer, Influence of aging on damping of the magnesium-aluminium-zinc series, J. Alloys Compd., 437(2007), No. 1, p. 127.
    [5]
    S.Q. Feng, W.Y. Zhang, Y.H. Zhang, J.Y. Guan, and Y.C. Xu, Microstructure, mechanical properties and damping capacity of heat-treated Mg-Zn-Y-Nd-Zr alloy, Mater. Sci. Eng. A, 609(2014), p. 283.
    [6]
    A. Granato and K. Lücke, Theory of mechanical damping due to dislocations, J. Appl. Phys., 27(1956), p. 583.
    [7]
    A. Granato and K. Lücke, Application of dislocation theory to internal friction phenomena at high frequencies, J. Appl. Phys., 27(1956), p. 789.
    [8]
    T. Gancarz, J. Jourdan, W. Gasior, and H. Henein, Physicochemical properties of Al, Al-Mg and Al-Mg-Zn alloys, J. Mol. Liq., 249(2018), p. 471.
    [9]
    S.S.V. Tatiparti and F. Ebrahimi, Nanostructure stabilization in electrodeposited Al-Mg dendrites, J. Alloys Compd., 694(2017), p. 634.
    [10]
    D. Nagarajan, X. Ren, and C.H. Cáceres, Anelastic behavior of Mg-Al and Mg-Zn solid solutions, Mater. Sci. Eng. A, 696(2017), p. 387.
    [11]
    S. Zhu, Z.H. Li, L.Z. Yan, X.W. Li, S.H. Huang, H.W. Yan, Y.G. Zhang, and B.Q. Xiong, Effects of Zn addition on the age hardening behavior and precipitation evolution of an Al-Mg-Si-Cu alloy, Mater. Charact., 145(2018), p. 258.
    [12]
    T. Motoyama, H. Watanabe, N. Ikeo, and T. Mukai, Mechanical and damping properties of equal channel angular extrusion-processed Mg-Ca alloys, Mater. Lett., 201(2017), p. 145.
    [13]
    L.B. Ren, G.F. Quan, Y.G. Xu, D.D. Yin, J.W. Lu, and J.T. Dang, Effect of heat treatment and pre-deformation on damping capacity of cast Mg-Y binary alloys, J. Alloys Compd., 699(2017), p. 976.
    [14]
    H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg-Zn-Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800.
    [15]
    A. Puškár. Internal Friction of Materials, Cambridge International Science Publishing, Cambridge, 2001, p. 386.
    [16]
    Y.J. Cui, Y.P. Li, S.H. Sun, H.K. Bian, H. Huang, Z.C. Wang, Y. Koizumi, and A. Chiba, Enhanced damping capacity of magnesium alloys by tensile twin boundaries, Scripta Mater., 101(2015), p. 8.
    [17]
    L.H. Liao, X.Q. Zhang, H.W. Wang, X.F. Li, and N.H. Ma, The characteristic of damping peak in Mg-9Al-Si Alloys, J. Alloys Compd., 429(2007), No. 1, p. 163.
    [18]
    L. Gao, R.S. Chen, and E.H. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, J. Alloys Compd., 481(2009), No. 1-2, p. 379.
    [19]
    Z.R. Liu and D.Y. Li, The electronic origin of strengthening and ductilizing magnesium by solid solutes, Acta Mater., 89(2015), p. 225.
    [20]
    E.A. Protopopov, A.I. Val’ter, A.A. Protopopov, and P.I. Malenko, Regression relations for estimating the mechanical properties of steels subjected to solid-solution hardening, Russ. Metall., 2015(2015), No. 7, p. 565.
    [21]
    Z.T. Li, X.D. Zhang, M.Y. Zheng, X.G. Qiao, K. Wu, C. Xu, and S. Kamado, Effect of Ca/Al ratio on microstructure and mechanical properties of Mg-Al-Ca-Mn alloys, Mater. Sci. Eng. A, 682(2017), p. 423.
    [22]
    C.H. Cáceres and D.M. Rovera, Solid solution strengthening in concentrated Mg-Al alloys, J. Light Met., 1(2001), No. 3, p. 151.
    [23]
    K.M. Asl, A. Masoudi, and F. Khomamizadeh, The effect of different rare earth elements content on microstructure, mechanical and wear behavior of Mg-Al-Zn alloy, Mater. Sci. Eng. A, 527(2010), No. 7-8, p. 2027.
    [24]
    T. Bhattacharjee, C.L. Mendis, T.T. Sasaki, T. Ohkubo, and K. Hono, Effect of Zr addition on the precipitation in Mg-Zn-based alloy, Scripta Mater., 67(2012), No. 12, p. 967.
    [25]
    X.S. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, Mechanical properties of Mg-Al-Zn alloy with a tilted basal texture obtained by differential speed rolling, Mater. Sci. Eng. A, 488(2008), No. 1-2, p. 214.
    [26]
    J.J. He, B. Jiang, H.M. Xie, Z.T. Jiang, B. Liu, and F.S. Pan, Improved tension-compression performance of Mg-Al-Zn alloy processed by co-extrusion, Mater. Sci. Eng. A, 675(2016), p. 76.
    [27]
    H. Feng, H.P. Liu, H. Cao, Y. Yang, Y.C. Xu, and J.Y. Guan, Effect of precipitates on mechanical and damping properties of Mg-Zn-Y-Nd alloys, Mater. Sci. Eng. A, 639(2015), p. 1.
    [28]
    E. Pink and A. Grinberg, Stress drops in serrated flow curves of A15Mg, Acta Metall., 30(1982), No. 12, p. 2153.
    [29]
    J.A. Yasi, L.G. Hector Jr, and D.R. Trinkle, First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties, Acta Mater., 58(2010), No. 17, p. 5704.
    [30]
    R.L. Fleisgher, Solution hardening, Acta Metall., 9(1961), No. 11, p. 996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(603) PDF Downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return