Yu Wang, Yue-dong Wu, Ke-han Wu, Shu-qiang Jiao, Kuo-chih Chou, and Guo-hua Zhang, Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2, Int. J. Miner. Metall. Mater., 26(2019), No. 7, pp. 831-838. https://doi.org/10.1007/s12613-019-1794-9
Cite this article as:
Yu Wang, Yue-dong Wu, Ke-han Wu, Shu-qiang Jiao, Kuo-chih Chou, and Guo-hua Zhang, Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2, Int. J. Miner. Metall. Mater., 26(2019), No. 7, pp. 831-838. https://doi.org/10.1007/s12613-019-1794-9
Research Article

Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2

+ Author Affiliations
  • Corresponding author:

    Guo-hua Zhang    E-mail: ghzhang0914@ustb.edu.cn

  • Received: 1 September 2018Revised: 14 October 2018Accepted: 30 October 2018
  • ZrB2 powders were synthesized via a borothermal reduction reaction of ZrO2 with the assistance of NaCl under a flowing Ar atmosphere. The optimal temperature and reaction time were 1223 K and 3 h, respectively. Compared with the reactions conducted without the addition of NaCl, those performed with the addition of an appropriate amount of NaCl finished at substantially lower temperatures. However, the addition of too much NaCl suppressed this effect. With the assistance of NaCl, a special morphology of polyhedral ZrB2 particles covered with ZrB2 nanosheets was obtained. Moreover, the experimental results revealed that the special morphology was the result of the combined effects of B2O3 and NaCl. The formation of the special microstructure is explained on the basis of the "dissolution-recrystallization" mechanism.
  • loading
  • [1]
    M.S. Asl, B. Nayebi, Z. Ahmadi, M.J. Zamharir, and M. Shokouhimehr, Effects of carbon additives on the properties of ZrB2-based composites:A review, Ceram. Int., 44(2018), No. 7, p. 7334.
    [2]
    W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 90(2007), No. 5, p. 1347.
    [3]
    F. Monteverde, R. Savino, and M. De Stefano Fumo, Dynamic oxidation of ultra-high temperature ZrB2-SiC under high enthalpy supersonic flows, Corros. Sci., 53(2011), No. 3, p. 922.
    [4]
    Z. Amirsardari, R.M. Aghdam, M. Salavati-Niasari, and S. Niasari, Enhanced thermal resistance of GO/C/phenolic nanocomposite by introducing ZrB2 nanoparticles, Composites Part B, 76(2015), p. 174.
    [5]
    F. Monteverde, A. Bellosi, and S. Guicciardi, Processing and properties of zirconium diboride-based composites, J. Eur. Ceram. Soc., 22(2002), No. 3, p. 279.
    [6]
    S.Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties:A review, J. Eur. Ceram. Soc., 29(2009), No. 6, p. 995.
    [7]
    R.X. Li, H.J. Lou, S. Yin, Y. Zhang, Y.S. Jiang, B. Zhao, J.P. Li, Z.H. Feng, and T. Satob, Nanocarbon-dependent synthesis of ZrB2 in a binary ZrO2 and boron system, J. Alloys Compd., 509(2011), No. 34, p. 8581.
    [8]
    L. Ma, J.C. Yu, X. Guo, Y.S. Zhang, Y.R. Feng, H. Zong, Y.J. Zhang, and H.Y. Gong, Effects of HBO2 on phase and morphology of ZrB2 powders synthesized by carbothermal reduction, Ceram. Int., 43(2017), No. 15, p. 12975.
    [9]
    J.H. Liu, Z. Huang, C.G. Huo, F.L. Li, H.J. Zhang, and S.W. Zhang, Low-temperature rapid synthesis of rod-like ZrB2 powders by molten-salt and microwave co-assisted carbothermal reduction, J. Am. Ceram. Soc., 99(2016), No. 9, p. 2895.
    [10]
    S.W. Zhang, M. Khangkhamano, H.J. Zhang, and H.A Yeprem, Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction, J. Am. Ceram. Soc., 97(2014), No. 6, p. 1686.
    [11]
    L. Zoli, P. Galizia, L. Silvestroni, and D. Sciti, Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride, J. Am Ceram. Soc., 101(2018), No. 6, p. 2627.
    [12]
    M. Jalaly, M.S. Bafghi, M. Tamizifar, and F.J. Gotor, An investigation on the formation mechanism of nano ZrB2, powder by a magnesiothermic reaction, J. Alloys Compd., 588(2018), p. 36
    [13]
    L.Y. Bai, H.C. Jin, C. Lu, F.L. Yuan, S.L Huang, and J.L. Li, RF thermal plasma-assisted metallothermic synthesis of ultrafine ZrB2 powders, Ceram. Int., 41(2015), No. 6, p. 7312.
    [14]
    M. Salavati-Niasari, M. Dadkhah, and F. Davar, Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor, Polyhedron, 28(2009), No. 14, p. 3005.
    [15]
    S. Zinatloo-Ajabshir and M. Salavati-Niasari, Facile route to synthesize zirconium dioxide (ZrO2) nanostructures:Structural, optical and photocatalytic studies, J. Mol. Liq., 216(2016), p. 545.
    [16]
    S. Zinatloo-Ajabshir and M. Salavati-Niasari, Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical-assisted route, J. Ind. Eng. Chem., 20(2014), No. 5, p. 3313.
    [17]
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, and Z. Zinatloo-Ajabshir, Nd2Zr2O7-Nd2O3 nanocomposites:New facile synthesis, characterization and investigation of photocatalytic behavior, Mater. Lett., 180(2016), p. 27.
    [18]
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, FactSage thermochemical software and databases-recent developments, Calphad, 33(2009), No. 2, p. 295.
    [19]
    W.M. Guo, D.W. Tan, Z.L. Zhang, L.X. Wu, and H.T. Lin, Synthesis of fine ZrB2 powders by new borothermal reduction of coarse ZrO2 powders, Ceram. Int., 42(2016), No. 13 p. 15087.
    [20]
    S.L. Ran, O. Van der Biest, and J. Vleugels, ZrB2 powders synthesis by borothermal reduction, J. Am. Ceram. Soc., 93(2010), No. 6, p. 1586.
    [21]
    Z.T. Liu, Y.N. Wei, X. Meng, T.T. Wei, and S.L. Ran, Synthesis of CrB2 powders at 800℃ under ambient pressure, Ceram. Int., 43(2017), No. 1, p. 1628.
    [22]
    G.J. Janz, Molten salts data as reference standards for density, surface tension, viscosity, and electrical conductance:KNO3 and NaCl, J. Phys. Chem. Ref. Data, 9(2015), No. 4, p. 791.
    [23]
    J.D. Mackenzie, The viscosity, molar volume, and electric conductivity of liquid boron trioxide, Trans. Faraday Soc., 52(1956), p. 1564.
    [24]
    X.L. Hu, Y. Masuda, T. Ohji, and K. Kato, Dissolution-recrystallization induced hierarchical structure in ZnO:Bunched roselike and core-shell-like particles, Cryst. Growth Des., 10(2010), No. 2, p. 626.
    [25]
    F. Beshkar, H. Khojasteh, and M. Salavati-Niasari, Flower-like CuO/ZnO hybrid hierarchical nanostructures grown on copper substrate:Glycothermal synthesis, characterization, hydrophobic and anticorrosion properties, Materials, 10(2017), No. 7, p. 697.
    [26]
    Z.H. Ding, Q.H. Deng, D.W. Shi, X.B. Zhou, Y. Li, S.L. Ran, and Q. Huang, Synthesis of hexagonal columnar ZrB2 powders through dissolution-recrystallization approach by microwave heating method, J. Am. Ceram. Soc., 97(2015), No. 10, p. 3037.
    [27]
    Y.W. Wang, J.T. He, C.C. Liu, W.H. Chong, and H.Y. Chen, Thermodynamics versus kinetics in nanosynthesis, Angew. Chem. Int. Ed., 54(2015), No. 7, p. 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(584) PDF Downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return