Cite this article as: | Yu-peng Li, Da-qian Sun, Wen-biao Gong, and Liang Liu, Effects of postweld aging on the microstructure and properties of bobbin tool friction stir-welded 6082-T6 aluminum alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 7, pp.849-857. https://dx.doi.org/10.1007/s12613-019-1800-2 |
R.S. Mishtra, P.S. De, and N. Kumar, Friction Stir Welding and Processing, Springer International Publishing, Switzerland, 2014, p. 109.
|
Y. Hovanski, J.E. Carsley, K.D. Clarke, and P.E. Krajewski, Friction-stir welding and processing, JOM, 67(2015), No. 5, p. 996.
|
G. Çam and S. Mıstıkoğlu, Recent developments in friction stir welding of Al-alloys, J. Mater. Eng. Perform., 23(2014), No. 6, p. 1936.
|
P.L. Threadgill, M.M.Z. Ahmed, J.P. Martin, J.G. Perrett, and B.P. Wynne, The use of bobbin tools for friction stir welding of aluminum alloys, Mater. Sci. Forum., 638-642(2010), p. 1179.
|
M.K. Sued, D. Pons, J. Lavroff, and E.H. Wong, Design features for bobbin friction stir welding tools:development of a conceptual model linking the underlying physics to the production process, Mater. Des., 54(2014), p. 632.
|
W.F. Xu, Y.X. Luo, W. Zhang, and M.W. Fu, Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate, J. Mater. Sci. Technol., 34(2018), No. 1, p. 173.
|
S.J. Chen, H. Li, S. Lu, R.Y. Ni, and J.H. Dong, Temperature measurement and control of bobbin tool friction stir welding, Int. J. Adv. Manuf. Technol., 86(2016), No. 1-4, p. 337.
|
F.F. Wang, W.Y. Li, J. Shen, Q. Wen, and J.F. dos Santos, Improving weld formability by a novel dual-rotation bobbin tool friction stir welding, J. Mater. Sci. Technol., 34(2018), No. 1, p. 135.
|
J.J. Shen, F.F. Wang, U.F.H. Suhuddin, S.Y. Hu, W.Y. Li, and J.F. dos Santos, Crystallographic texture in bobbin tool friction stir welded aluminum, Metall. Mater. Trans. A, 46(2015), No. 7, p. 2809.
|
L. Wan, Y.X. Huang, Z.L. Lv, S.X. Lv, and J.C. Feng, Effect of self-support friction stir welding on microstructure and microhardness of 6082-T6 aluminum alloy joint, Mater. Des., 55(2014), p. 197.
|
H.J. Zhang, M. Wang, X. Zhang, and G.X. Yang, Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy, Mater. Des., 65(2015), p. 559.
|
J.H. Dong, C. Gao, Y. Lu, J. Han, X.D. Jiao, and Z.X. Zhu, Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024-T3 aluminum alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 171.
|
J.Y. Li, X.P. Zhou, C.L. Dong, and J.H. Dong, Temperature fields in 6082 aluminum alloy samples bobbin-tool friction stir welded, J. Aeronaut. Mater., 33(2013), No. 5, p. 36.
|
X.M. Liu, J.S. Yao, Y. Cai, H. Meng, and Z.D. Zou, Simulation on the temperature field of bobbin tool friction stir welding of AA 2014 aluminium alloy, Appl. Mech. Mater., 433-435(2013), p. 2091.
|
J. Boonma, S. Khammuangsa, K. Uttarasak, J. Dutchaneephet, C. Boonruang, and N. Sirikulrat, Post-weld heat treatment effects on hardness and impact strength of aluminum alloy 6061 friction stir butt weld, Mater. Trans., 56(2015), No. 7, p. 1072.
|
G. İpekoğlu, S. Erim, and G. Çam, Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 al-alloy plates with different temper conditions, Metall. Mater. Trans. A, 45(2014), No. 2, p. 864.
|
Z. Zhang, B.L. Xiao, and Z.Y. Ma, Enhancing mechanical properties of friction stir welded 2219Al-T6 joints at high welding speed through water cooling and post-welding artificial ageing, Mater. Charact., 106(2015), p. 255.
|
R.D. Fu, J.F. Zhang, Y.J. Li, J. Kang, H.J. Liu, and F.C. Zhang, Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet, Mater. Sci. Eng. A, 559(2013), p. 319.
|
ASTM E8/E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2013.
|
B. Wang, Study on Microstructures and Mechanical Properties of Friction Stir Welding Joints of 6082-T6 Aluminum Alloy[Dissertation], Jilin University, Jilin, 2013, p. 21.
|
M.A. Sutton, B. Yang, A.P. Reynolds, and R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum, Mater. Sci. Eng. A, 323(2002), No. 1-2, p. 160.
|
R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, and S.J. Andersen, The crystal structure of the β'phase in Al-Mg-Si alloys, Acta Mater., 55(2007), No. 11. p. 3815.
|
C.D. Marioara, S.J. Andersen, H.W. Zandbergen, and R. Holmestad, The influence of alloy composition on precipitates of the Al-Mg-Si system, Metall. Mater. Trans. A, 36(2005), No. 3, p. 691.
|
E. Cerri, P. Leo, X. Wang, and J.D. Embury, Mechanical properties and microstructural evolution of friction-stir-welded thin sheet aluminum alloys, Metall. Mater. Trans. A, 42(2011), No. 5, p. 1283.
|
W.C. Yang, M.P. Wang, X.F. Sheng, Q. Zhang, and Z.A. Wang, Study of the aging precipitation and hardening behavior of 6005A alloy sheet for rail traffic vehicle, Acta Metall. Sin., 46(2010), No. 12, p. 1481.
|
[1] | Semih Mahmut Aktarer, Dursun Murat Sekban, Tevfik Kucukomeroglu, Gencaga Purcek. Microstructure, mechanical properties and formability of friction stir welded dissimilar materials of IF-steel and 6061 Al alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(6): 722-731. DOI: 10.1007/s12613-019-1783-z |
[2] | M. Alipour Behzadi, Khalil Ranjbar, R. Dehmolaei, E. Bagherpour. Friction-stir-welded overaged 7020-T6 alloy joint: an investigation on the effect of rotational speed on the microstructure and mechanical properties [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(5): 622-633. DOI: 10.1007/s12613-019-1770-4 |
[3] | Tevfik Küçükömeroğlu, Semih M. Aktarer, Güven İpekoğlu, Gürel Çam. Microstructure and mechanical properties of friction-stir welded St52 steel joints [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(12): 1457-1464. DOI: 10.1007/s12613-018-1700-x |
[4] | Hamed Jamshidi Aval. Microstructural evolution and mechanical properties of friction stir-welded C71000 copper-nickel alloy and 304 austenitic stainless steel [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(11): 1294-1303. DOI: 10.1007/s12613-018-1682-8 |
[5] | Ali Shamsipur, Amir Anvari, Ahmad Keyvani. Improvement of microstructure and corrosion properties of friction stir welded AA5754 by adding Zn interlayer [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(8): 967-973. DOI: 10.1007/s12613-018-1646-z |
[6] | Dong Wu, Jun Shen, Meng-bing Zhou, Liang Cheng, Jia-xing Sang. Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(10): 1169-1176. DOI: 10.1007/s12613-017-1507-1 |
[7] | Ji-hong Dong, Chong Gao, Yao Lu, Jian Han, Xiang-dong Jiao, Zhi-xiong Zhu. Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024-T3 aluminum alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(2): 171-178. DOI: 10.1007/s12613-017-1392-7 |
[8] | Ali Alavi Nia, Ali Shirazi. Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(7): 799-809. DOI: 10.1007/s12613-016-1294-0 |
[9] | Dong Peng, Jun Shen, Qin Tang, Cui-ping Wu, Yan-bing Zhou. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(3): 259-265. DOI: 10.1007/s12613-013-0721-8 |
[10] | Dan Wang, Jun Shen, Lin-zhi Wang. Effects of the types of overlap on the mechanical properties of FSSW welded AZ series magnesium alloy joints [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(3): 231-235. DOI: 10.1007/s12613-012-0543-0 |
1. | Yanming Xia, Dejing Zhou, Da-Hai Xia, et al. The relationship between microstructural characteristics and galvanic effect, SCC behavior of friction stir welded joint in as-welded and heat-treated conditions. Journal of Materials Science & Technology, 2025, 223: 186. DOI:10.1016/j.jmst.2024.11.005 |
2. | Shuncun Luo, Yang Tao, Zibin Wu, et al. Effect of pre-aging and paint baking processes on precipitation behavior in heat-affected zone of CMT welded Al–Mg–Si–Cu alloy joint. Journal of Materials Research and Technology, 2025, 35: 6156. DOI:10.1016/j.jmrt.2025.02.236 |
3. | Yumeng Sun, Lei Zhan, Xu Li, et al. Effect of Different Welding Speeds on Microstructure and Properties of Bobbin Tool Friction Stir Welded Joints of T2 Pure Copper. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-09873-x |
4. | Yumeng Sun, Wei Liu, Yupeng Li, et al. Study on temperature field, microstructure, and properties of T2 pure copper by bobbin tool friction stir welding. The International Journal of Advanced Manufacturing Technology, 2023, 127(3-4): 1341. DOI:10.1007/s00170-023-11650-4 |
5. | Yumeng Sun, Wenbiao Gong, Yupeng Li, et al. Effect of rotation speed on microstructure and mechanical properties of bobbin tool friction stir welded T2 copper. Materials Today Communications, 2023, 35: 106365. DOI:10.1016/j.mtcomm.2023.106365 |
6. | De-fu Li, Xi-jing Wang, Zao-long Zhao. Grain orientation and texture analysis of 6082 aluminum alloy friction plug welded joints. Journal of Materials Research and Technology, 2022, 18: 1763. DOI:10.1016/j.jmrt.2022.03.085 |
7. | C. Yang, Z.L. Wang, M. Zhang, et al. Enhancing joint strength of bobbin tool friction stir welded Al–Mg–Si alloy via post-weld aging process. Journal of Materials Research and Technology, 2022, 21: 4688. DOI:10.1016/j.jmrt.2022.11.058 |
8. | Srinivasa Naik Bhukya, Zhenhua Wu, Joseph Maniscalco, et al. Effect of copper donor material-assisted friction stir welding of AA6061-T6 alloy on downward force, microstructure, and mechanical properties. The International Journal of Advanced Manufacturing Technology, 2022, 119(5-6): 2847. DOI:10.1007/s00170-021-08390-8 |
9. | Hang Zhang, Yu-meng Sun, Wen-biao Gong, et al. Growth mechanism and motion trajectory of lazy “S” in friction stir welding joint of 6082-T6 aluminum alloy. SN Applied Sciences, 2021, 3(2) DOI:10.1007/s42452-021-04198-z |
10. | Mansour Mardalizadeh, Mehrdad Khandaei, Mohammad Ali Safarkhanian. Floating-Bobbin-Tool Friction Stir Welding of 20-mm-Thick AA5456-H112 Plates: Microstructure and Weld Strength. Journal of Materials Engineering and Performance, 2021, 30(5): 3284. DOI:10.1007/s11665-021-05669-5 |
11. | Yupeng Li, Daqian Sun, Wenbiao Gong. Effect of Tool Rotational Speed on the Microstructure and Mechanical Properties of Bobbin Tool Friction Stir Welded 6082-T6 Aluminum Alloy. Metals, 2019, 9(8): 894. DOI:10.3390/met9080894 |
12. | Esther Titilayo Akinlabi, Rasheedat Modupe Mahamood. Solid-State Welding: Friction and Friction Stir Welding Processes. Mechanical Engineering Series, DOI:10.1007/978-3-030-37015-2_3 |