Qi-qiang Mou, Jian-li Li, Qiang Zeng,  and Hang-yu Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1113-1119. https://doi.org/10.1007/s12613-019-1822-9
Cite this article as:
Qi-qiang Mou, Jian-li Li, Qiang Zeng,  and Hang-yu Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1113-1119. https://doi.org/10.1007/s12613-019-1822-9
Research Article

Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system

+ Author Affiliations
  • Corresponding author:

    Jian-li Li    E-mail: jli@wust.edu.cn

  • Received: 5 November 2018Revised: 15 March 2019Accepted: 29 March 2019
  • size of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system was investigated using lab experiments carried out in a carbon tube furnace. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD) were used to analyze the microstructure, components, and the mineral phases of synthetic slags. FactSage 7.1 was used to calculate the crystallization process of the molten slag. The results showed that the addition of Fe2O3 promoted the precipitation of spinel crystals and inhibited the formation of dicalcium silicate. The size of spinel crystals increased from 2.74 to 8.10 μm and the contents of chromium and iron in the spinel varied as the Fe2O3 addition was increased from 0 to 20wt%. Fe2O3 thermodynamically provided the spinel-forming components to enhance the formation of FeCr2O4, MgFe2O4, and Fe3O4. The addition of Fe2O3 increased the fraction of liquid phase in a certain temperature range and promoted diffusion by decreasing the slag's viscosity. Therefore, Fe2O3 is beneficial to the growth of spinel crystals in stainless steel slag.
  • loading
  • [1]
    J. Spooren, E. Kim, L. Horckmans, K. Broos, P. Nielsen, and M. Quaghebeur, In-situ chromium and vanadium recovery of landfilled ferrochromium and stainless steel slags, Chem. Eng. J., 303(2016), p. 359.
    [2]
    H.T. Shen, E. Forssberg, and U. Nordström, Physicochemical and mineralogical properties of stainless steel slags oriented to metal recovery, Resour. Conserv. Recycl., 40(2004), No. 3, p. 245.
    [3]
    E. Kim, J. Spooren, K. Broos, P. Nielsen, L. Horckmans, R. Geurts, K.C. Vrancken, and M. Quaghebeur, Valorization of stainless steel slag by selective chromium recovery and subsequent carbonation of the matrix material, J. Clean. Prod., 117(2016), p. 221.
    [4]
    P.C. Lei, X.J. Shen, Y. Li, M. Guo, and M. Zhang, An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr3+ removal capacity, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 850.
    [5]
    H.W. Zhang and X. Hong, An overview for the utilization of wastes from stainless steel industries, Resour. Conserv. Recycl., 55(2011), No. 8, p. 745.
    [6]
    M.A. Reuter, Recycling and environmental issues of metallurgical slags and salt fluxes,[in] VⅡ International Conference on Molten Slags Fluxes and Salts, the South African Institute of Mining and Metallurgy, 2004, p. 349.
    [7]
    L.H. Cao, C.J. Liu, Q. Zhao, and M.F. Jiang, Migrant and enrichment behavior of chromium in stainless steel slag at different basicities, Steelmaking, 32(2016), No. 6, p. 73.
    [8]
    K. Pillay, H. Von Blottnitz, and J. Petersen, Ageing of chromium(Ⅲ)-bearing slag and its relation to the atmospheric oxidation of solid chromium(Ⅲ)-oxide in the presence of calcium oxide, Chemosphere, 52(2003), No. 10, p. 1771.
    [9]
    A.M. Fällman, Leaching of chromium and barium from steel slag in laboratory and field tests-a solubility controlled process, Waste Manage., 20(2000), No. 2-3, p. 149.
    [10]
    L.P. De Bock and H. Van den Bergh, Stainless steel slags in hydraulic bound mixtures for road construction, two case studies in Belgium,[in] International RILEM Conference on the Use of Recycled Materials in Building and Structures, Barcelona, 2004, p. 1095.
    [11]
    H.T. Shen and E. Forssberg, An overview of recovery of metals from slags, Waste Manage., 23(2003), No. 10, p. 933.
    [12]
    X.M. Li, W.F. Li, S.J. Wang, and L.G. Shi, Research status on comprehensive utilization of stainless steel slag, Hydrometall. China, 31(2012), No. 1, p. 5.
    [13]
    J. Wen, T. Jiang, M. Zhou, H.Y. Gao, J.Y. Liu, and X.X. Xue, Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 515.
    [14]
    J.L. Li, A.J. Xu, D.F. He, Q.X. Yang, and N.Y. Tian, Effect of FeO on the formation of spinel phases and chromium distribution in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 253.
    [15]
    Y.H. Sui, Y.H. Liang, and C.M. Qi, Method and significance for study of isomorphism, World Geol., 23(2004), No. 4, p. 326.
    [16]
    L.H. Cao, C.J. Liu, and Q. Zhao, Analysis on the stability of chromium in mineral phases in stainless steel slag, Metall. Res. Technol., 115(2018), No. 1, p. 114.
    [17]
    W. Wang, W. Liao, X.R. Wu, and L.S. Li, Study on occurrence and concentrating behavior of chromium in stainless steel slag, Multipurpose Util. Miner. Resour., (2012), No. 3, p. 42.
    [18]
    W.C. Zhang, X.R. Wu, W. Wang, W. Liao, and L.S. Liao, Enrichment of chromium in stainless steel slag by modification, J. Anhui Univ.Technol. Nat. Sci., 29(2012), No. 1, p. 12.
    [19]
    G. Albertsson, L.D. Teng, B. Björkman, S. Seetharaman, and F. Engstrom, Effect of low oxygen partial pressure on the chromium partition in CaO-MgO-SiO2-Cr2O3-Al2O3 synthetic slag at elevated temperatures, Steel. Res. Int., 84(2013), No. 7, p. 670.
    [20]
    Q. Zeng, J.L. Li, Q.Q. Mou, H.Y. Zhu, and Z.L. Xue, Effect of FeO on spinel crystallization and chromium stability in stainless steel-making slag, JOM, 71(2019), No. 7, p. 2331.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(525) PDF Downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return