Cite this article as: |
Sheng-hua Yin, Lei-ming Wang, Ai-xiang Wu, Xun Chen, and Rong-fu Yan, Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp. 1337-1350. https://doi.org/10.1007/s12613-019-1826-5 |
Lei-ming Wang E-mail: ustb_wlm@126.com
[1] |
J. Petersen, Heap leaching as a key technology for recovery of values from low-grade ores-A brief overview, Hydromet-allurgy, 165(2016), p. 206.
|
[2] |
I.M.S.K. Ilankoon, Y. Tang, Y. Ghorbani, S. Northey, M. Yellishetty, X.Y. Deng, and D. McBride, The current state and future directions of percolation leaching in the Chinese mining industry:Challenges and opportunities, Miner. Eng., 125(2018), p. 206.
|
[3] |
C.L. Brierley, Biohydrometallurgical prospects, Hydrometal-lurgy, 104(2010), No. 3-4, p. 324.
|
[4] |
S.H. Yin, L.M. Wang, E. Kabwe, X. Chen, R.F. Yan, K. An, L. Zhang, and A.X. Wu, Copper bioleaching in China:Re-view and prospect, Minerals, 8(2018), No. 2, p. 32.
|
[5] |
H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides-A review, Hydrometallurgy, 84(2006), No. 1-2, p. 81.
|
[6] |
D. Dreisinger, Copper leaching from primary sulfides:Op-tions for biological and chemical extraction of copper, Hy-drometallurgy, 83(2006), No. 1-4, p. 10.
|
[7] |
S.H. Yin, L.M. Wang, A.X. Wu, M.L. Free, and E. Kabwe, Enhancement of copper recovery by acid leaching of high-mud copper oxides:A case study at Yangla Copper Mine, China, J. Cleaner Prod., 202(2018), p. 321.
|
[8] |
S.H. Yin, L.M. Wang, A.X. Wu, E. Kabwe, X. Chen, and R.F. Yan, Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria, J. Cleaner Prod., 189(2018), p. 746.
|
[9] |
R.M. Ruan, J.K. Wen, and J.H. Chen, Bacterial heap-leaching:Practice in Zijinshan copper mine, Hydromet-allurgy, 83(2006), No. 1-4, p. 77.
|
[10] |
J.A. Brierley and C.L. Brierley, Present and future commer-cial applications of biohydrometallurgy, Hydrometallurgy, 59(2001), No. 2-3, p. 233.
|
[11] |
J.C. Gentina and F. Acevedo, Application of bioleaching to copper mining in Chile, Electron. J. Biotechnol., 16(2013), No. 3, p. 16.
|
[12] |
S.H. Yin, A.X. Wu, K.J. Hu, Y.M. Wang, and Z.L. Xue, Visualization of flow behavior during bioleaching of waste rock dumps under saturated and unsaturated conditions, Hydrometallurgy, 133(2013), p. 1.
|
[13] |
S.H. Yin, L.M. Wang, X. Chen, and A.X. Wu, Effect of ore size and heap porosity on capillary process inside leaching heap, Trans. Nonferrous Met. Soc. China, 26(2016), No. 3, p. 835.
|
[14] |
X.D. Hao, Y.L. Liang, H.Q Yin, H.W. Liu, W.M. Zeng, and X.D. Liu. Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community succession analysis, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 360.
|
[15] |
H.R. Watling, D.M. Collinson, S. Fjastad, A.H. Kaksonen, J. Li, C. Morris, F.A. Perrot, S.M. Rea, and D.W. Shiers, Column bioleaching of a polymetallic ore:Effects of pH and temperature on metal extraction and microbial community structure, Miner. Eng., 58(2014), p. 90.
|
[16] |
A.N. Nikoloski, G.P. O'Malley, and S.J. Bagas, The effect of silver on the acidic ferric sulfate leaching of primary copper sulfides under recycle solution conditions observed in heap leaching. Part 1:Kinetics and reaction mechanisms, Hydrometallurgy, 173(2017), p. 258.
|
[17] |
A.R. Colmer, K.L. Temple, and M.E. Hinkle, An iron-oxidizing bacterium from the acid drainage of some bi-tuminous coal mines, J. Bacteriol., 59(1950), No. 3, p. 317.
|
[18] |
X.Y. Liu, B.W. Chen, J.H. Chen, M.J. Zhang, J.K. Wen, D.Z. Wang, and R.M. Ruan, Spatial variation of microbial community structure in the Zijinshan commercial copper heap bioleaching plant, Miner. Eng., 94(2016), p. 76.
|
[19] |
C.L. Brierley, Bacterial succession in bioheap leaching, Hy-drometallurgy, 59(2001), No. 2-3, p. 249.
|
[20] |
R.R. Auld, M. Myre, N.C.S. Mykytczuk, L.G. Leduc, and T.J.S. Merritt, Characterization of the microbial acid mine drainage microbial community using culturing and direct se-quencing techniques, J. Microbiol. Methods, 93(2013), No. 2, p. 108.
|
[21] |
A. Vardanyan, S. Stepanyan, N. Vardanyan, L. Markosyan, W. Sand, M. Vera, and R.Y. Zhang, Study and assessment of microbial communities in natural and commercial bioleaching systems, Miner. Eng., 81(2015), p. 167.
|
[22] |
D. Travisany, M.P. Cortés, M. Latorre, A.D. Genova, M. Budinich, R.A. Bobadilla-Fazzini, P. Parada, M. González, and A. Maass, A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment, Res. Microbiol., 165(2014), No. 9, p. 743.
|
[23] |
S.P. Li, N. Guo, H.Y. Wu, G.Z. Qiu, and X.Y. Liu, High efficient mixed culture screening and selected microbial community shift for bioleaching process, Trans. Nonferrous Met. Soc. China, 21(2011), No. 6, p. 1383.
|
[24] |
F.F. Roberto, 16S-rRNA gene-targeted amplicon sequence analysis of an enargite-dominant bioleach demonstration in Peru, Hydrometallurgy, 180(2018), p. 271.
|
[25] |
A. Potysz, E.D. van Hullebusch, and J. Kierczak, Perspec-tives regarding the use of metallurgical slags as secondary metal resources-A review of bioleaching approaches, J. En-viron. Manage., 219(2018), p. 138.
|
[26] |
D.W. Shiers, D.M. Collinson, and H.R. Watling, Life in heaps:A review of microbial responses to variable acidity in sulfide mineral bioleaching heaps for metal extraction, Res. Microbiol., 167(2016), No. 7, p. 576.
|
[27] |
R.L. Yu, L.J. Shi, G.H. Gu, D. Zhou, L. You, M. Chen, G.Z. Qiu, and W.M. Zeng, The shift of microbial community under the adjustment of initial and processing pH during bi-oleaching of chalcopyrite concentrate by moderate thermo-philes, Bioresour. Technol., 162(2014), p. 300.
|
[28] |
C. Demergasso, F. Galleguillos, P. Soto, M. Serón, and V. Iturriaga, Microbial succession during a heap bioleaching cycle of low grade copper sulfides:does this knowledge mean a real input for industrial process design and control?, Hydrometallurgy, 104(2010), No. 3-4, p. 382.
|
[29] |
A. Sklodowska and R. Matlakowska, Bioleaching of metals in neutral and slightly alkaline environment, Microbial Pro-cessing of Metal Sulfides, Springer, Dordrecht, 2007, p. 121.
|
[30] |
K.J. Hu, A.X. Wu, H.J. Wang, and S.Y. Wang, A new heterotrophic strain for bioleaching of low grade complex copper ore, Minerals, 6(2016), No. 1, p. 12.
|
[31] |
V.I. Groudeva, K. Krumova, and S.N. Groudev, Bioleaching of a rich-in-carbonates copper ore at alkaline pH, Adv. Mater. Res., 20-21(2007), p. 103.
|
[32] |
M.W. Beijerinck, Ueber Die Bakterien Welche Sich Im Dun-kels Mit Kohlensaure Als Kohlenstoffquelle Ernahren Kon-nen, Centralb Bacteriol Parasitenkb Infektionskr Hyg Abt II, 11(1904), p. 592.
|
[33] |
D.P. Kelly and A.P. Wood, Reclassification of some species of Thiobacillus to the newly designated genera Acidithioba-cillus gen. nov., Halothiobacillus gen. nov. and Thermithio-bacillus gen. nov., Int. J. Syst. Evol. Microbiol., 50(2000), No. 2, p. 511.
|
[34] |
D.P. Kelly, I.R. McDonald, and A.P. Wood, Proposal for the reclassification of Thiobacillus novellas as Starkeya novella gen. nov., comb. nov., in the alpha-subclass of the Proteobacteria, Int. J. Syst. Evol. Microbiol., 50(2000), No. 5, p. 1797.
|
[35] |
L.Y. Ma, X.J. Wang, X. Feng, Y.L. Liang, Y.H. Xiao, X.D. Hao, H.Q. Yin, H.W. Liu, and X.D. Liu, Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession, Bioresour. Technol., 223(2017), p. 121.
|
[36] |
J.P. Cárdenas, R. Quatrini, and D.S. Holmes, Genomic and metagenomic challenges and opportunities for bioleaching:A mini-review, Res. Microbiol., 167(2016), No. 7, p. 529.
|
[37] |
Y.B. Dong, H. Lin, and Y. Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater., 24(2017), No. 4, p. 369.
|
[38] |
H.L. Yang, S.S. Feng, Y. Xin, and W. Wang, Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp., Bioresour. Technol., 154(2014), p. 185.
|
[39] |
L.X. Chen, L.N. Huang, C. Méndez-García, J.L. Kuang, Z.S. Hua, J. Liu, and W.S. Shu, Microbial communities, processes and functions in acid mine drainage ecosystems, Curr. Opin. Biotechnol., 38(2016), p. 150.
|
[40] |
X.M. Diao, E. Taran, S. Mahler, and A.V. Nguyen, A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions, Adv. Colloid Interface Sci., 212(2014), p. 45.
|
[41] |
Q. Hu, X. Guo, Y.L. Liang, X.D. Hao, L.Y. Ma, H.Q. Yin, and X.D. Liu, Comparative metagenomics reveals microbial community differentiation in a biological heap leaching sys-tem, Res. Microbiol., 166(2015), No. 6, p. 525.
|
[42] |
S. Jeremic, V.P. Beškoski, L. Djokic, B. Vasiljevic, M.M. Vrvić, J. Avdalović, G.G. Cvijović, L.S. Beškoski, and J. Nikodinovic-Runic, Interactions of the metal tolerant hetero-trophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments, J. Environ. Manage., 172(2016), p. 151.
|
[43] |
S.B. Noei, S. Sheibani, F. Rashchi, and S.M.J. Mirazimi, Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 611.
|
[44] |
H.C. Liu, J.L. Xia, Z.Y. Nie, C.Y. Ma, L. Zheng, C.H. Hong, Y.D. Zhao, and W. Wen, Bioleaching of chalcopyrite by Acidianus manzaensis under different constant pH, Miner. Eng., 98(2016), p. 80.
|
[45] |
D. Fullston, D. Fornasiero, and J. Ralston, Zeta potential study of the oxidation of copper sulfide minerals, Colloids Surf. A, 146(1999), No. 1-3, p. 113.
|
[46] |
A. Sweity, Y. Wang, S. Belfer, G. Oron, and M. Herzberg, pH effects on the adherence and fouling propensity of extracellular polymeric substances in a membrane bioreactor, J. Membr. Sci., 378(2011), No. 1-2, p. 186.
|
[47] |
T.J. Peng, L.J. Shi, R.L. Yu, G.H. Gu, D. Zhou, M. Chen, G.Z. Qiu, and W.M. Zeng, Effects of processing pH stimula-tion on cooperative bioleaching of chalcopyrite concentrate by free and attached cells, Trans. Nonferrous Met. Soc. China, 26(2016), No. 8, p. 2220.
|
[48] |
H.R. Watling, D.M. Collinson, D.W. Shiers, C.G. Bryan, and E.L.J. Watkin, Effects of pH, temperature and solids loading on microbial community structure during batch culture on a polymetallic ore, Miner. Eng., 48(2013), p. 68.
|
[49] |
N.J. Boxall, S.M. Rea, J. Li, C. Morris, and A.H. Kaksonen, Effect of high sulfate concentrations on chalcopyrite bi-oleaching and molecular characterisation of the bioleaching microbial community, Hydrometallurgy, 168(2017), p. 32.
|
[50] |
X.Y. Liu, B. Wu, B.W. Chen, J.K. Wen, R.M. Ruan, G.C. Yao, and D.Z. Wang, Bioleaching of chalcocite started at dif-ferent pH:Response of the microbial community to envi-ronmental stress and leaching kinetics, Hydrometallurgy, 103(2010), No. 3-4, p. 1.
|
[51] |
Y. Yun, H. Wang, B. Man, X. Xiang, J. Zhou, X. Qiu, Y. Duan, and A.S. Engel, The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification, Front. Microbiol., 7(2016), p. 1955.
|
[52] |
M. Jafari, H. Abdollahi, S.Z. Shafaei, M. Gharabaghi, H. Jafari, A. Akcil, and S. Panda, Acidophilic bioleaching:A re-view on the process and effect of organic-inorganic reagents and materials on its efficiency, Miner. Process. Extr. Metall. Rev., 40(2019), No. 2, p. 87.
|
[53] |
R.L. Yu, J. Liu, A. Chen, D.L. Zhong, Q. Li, W.Q. Qin, G.Z. Qiu, and G.H. Gu, Interaction mechanism of Cu2+, Fe3+ ions and extracellular polymeric substances during bioleaching chalcopyrite by Acidithiobacillus ferrooxidans ATCC2370, Trans. Nonferrous Met. Soc. China, 23(2013), No. 1, p. 231.
|
[54] |
B.H. Yang, A.X. Wu, G.A. Narsilio, X.X. Miao, and S.Y. Wu, Use of high-resolution X-ray computed tomography and 3D image analysis to quantify mineral dissemination and pore space in oxide copper ore particles, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 965.
|
[55] |
Y. Jia, Q. Tan, H.Y. Sun, Y.P. Zhang, H.S. Gao, and R.M. Ruan, Sulfide mineral dissolution microbes:Community structure and function in industrial bioleaching heaps, Green Energy Environ., 4(2019), No. 1, p. 29.
|
[56] |
X.D. Hao, Y.L. Liang, H.Q. Yin, L.Y. Ma, Y.H. Xiao, Y.Z. Liu, G.Z. Qiu, and X.D. Liu, The effect of potential heap construction methods on column bioleaching of copper flota-tion tailings containing high levels of fines by mixed cultures, Miner. Eng., 98(2016), p. 279.
|
[57] |
M. Acosta, P. Galleguillos, Y. Ghorbani, P. Tapia, Y. Con-tador, A. Velásquez, C. Espoz, C. Pinilla, and C. Demergasso, Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bioleaching operation, Hydrometallurgy, 150(2014), p. 281.
|
[58] |
X.X. Miao, G.A. Narsilio, A.X. Wu, and B.H. Yang, A 3D dual pore-system leaching model. Part 1:Study on fluid flow, Hydrometallurgy, 167(2017), p. 173.
|
[59] |
N. Dhawan, M.S. Safarzadeh, J.D. Miller, M.S. Moats, R.K. Rajamani, and C.L. Lin, Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems, Miner. Eng., 35(2012), p. 75.
|
[60] |
I.M.S.K. Ilankoon and S.J. Neethling, Inter-particle liquid spread pertaining to heap leaching using UV fluorescence based image analysis, Hydrometallurgy, 183(2019), p. 175.
|
[61] |
C.L. Lin, A.R. Videla, and J.D. Miller, Advanced three-dimensional multiphase flow simulation in porous me-dia reconstructed from X-ray Microtomography using the He-Chen-Zhang Lattice Boltzmann Model, Flow Meas. In-strum., 21(2010), No. 3, p. 255.
|
[62] |
A.X. Wu, S.H. Yin, H.J. Wang, W.Q. Qin, and G.Z. Qiu, Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation, Bioresour. Technol., 100(2009), No. 6, p. 1931.
|
[63] |
I.M.S.K. Ilankoon and S.J. Neethling, Liquid spread mecha-nisms in packed beds and heaps. The separation of length and time scales due to particle porosity, Miner. Eng., 86(2016), p. 130.
|
[64] |
I.M.S.K. Ilankoon, K.E. Cole, and S.J. Neethling, Measuring hydrodynamic dispersion coefficients in unsaturated packed beds:Comparison of PEPT with conventional tracer tests, Chem. Eng. Sci., 89(2013), p. 152.
|
[65] |
I.M.S.K. Ilankoon and S.J. Neethling, Hysteresis in unsatu-rated flow in packed beds and heaps, Miner. Eng., 35(2012), p. 1.
|
[66] |
W.Y. Liu and M. Hashemzadeh, Solution flow behavior in response to key operating parameters in heap leaching, Hy-drometallurgy, 169(2017), p. 183.
|
[67] |
A.X. Wu, S.H. Yin, W.Q. Qin, J.S. Liu, and G.Z. Qiu, The effect of preferential flow on extraction and surface morphology of copper sulphides during heap leaching, Hydrometallurgy, 95(2009), No. 1-2, p. 76.
|
[68] |
A.X. Wu, S.H. Yin, B.H. Yang, J. Wang, and G.Z. Qiu, Study on preferential flow in dump leaching of low-grade ores, Hydrometallurgy, 87(2007), No. 3-4, p. 124.
|
[69] |
S. Orr, Enhanced heap leaching-I. Insights, Min. Eng., 54(2002), No. 9, p.1.
|
[70] |
S. Orr and V. Vesselinov, Enhanced heap leaching-II. Appli-cations, Min. Eng., 54(2002), No. 10, p. 49.
|
[71] |
L.R.P. de Andrade Lima, Liquid axial dispersion and holdup in column leaching, Miner. Eng., 19(2006), No. 1, p. 37.
|
[72] |
I.M.S.K. Ilankoon and S.J. Neethling, The effect of particle porosity on liquid holdup in heap leaching, Miner. Eng., 45(2013), p. 73.
|
[73] |
R. Chiume, S.H. Minnaar, I.E. Ngoma, C.G. Bryan, and S.T.L. Harrison, Microbial colonisation in heaps for mineral bioleaching and the influence of irrigation rate, Miner. Eng., 39(2012), p. 156.
|
[74] |
D. McBride, I.M.S.K. Ilankoon, S.J. Neethling, J.E. Gebhardt, and M. Cross, Preferential flow behaviour in un-saturated packed beds and heaps:Incorporating into a CFD model, Hydrometallurgy, 171(2017), p. 402.
|
[75] |
M.A. Fagan-Endres, S.T. Harrison, M.L. Johns, and A.J. Sederman, Magnetic resonance imaging characterisation of the influence of flowrate on liquid distribution in drip irrigated heap leaching, Hydrometallurgy, 158(2015), p. 157.
|
[76] |
M.A. Fagan, I.E. Ngoma, R.A. Chiume, S. Minnaar, A.J. Sederman, M.L. Johns, and S.T.L. Harrison, MRI and gravimetric studies of hydrology in drip irrigated heaps and its effect on the propagation of bioleaching micro-organisms, Hydrometallurgy, 150(2014), p. 210.
|
[77] |
H.D. Pan, H.Y. Yang, L.L. Tong, C.B. Zhong, and Y.S. Zhao, Control method of chalcopyrite passivation in bioleaching, Trans. Nonferrous Met. Soc. China, 22(2012), No. 9, p. 2255.
|
[78] |
H.B. Zhao, Y.S. Zhang, X. Zhang, L. Qian, M.L. Sun, Y. Yang. Y.S. Zhang, J. Wang, H. Kim, and G.Z. Qiu, The dis-solution and passivation mechanism of chalcopyrite in bi-oleaching:An overview, Miner. Eng., 136(2019), p. 140.
|
[79] |
H.R. Watling. Chalcopyrite hydrometallurgy at atmospheric pressure:1. Review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options, Hydrometallurgy, 140(2013), p. 163.
|
[80] |
Y.B. Li, G.J. Qian, P.L. Brown, and A.R. Gerson, Chalcopy-rite dissolution:Scanning photoelectron microscopy exami-nation of the evolution of sulfur species with and without added iron or pyrite, Geochim. Cosmochim. Acta, 212(2017), p. 33.
|
[81] |
R. Liu, A.L. Wolfe, D.A. Dzombak, C.P. Horwitz, B.W. Stewart, and R.C. Capo. Electrochemical study of hydro-thermal and sedimentary pyrite dissolution, Appl. Geochem., 23(2008), No. 9, p. 2724.
|
[82] |
H.B. Zhao, J. Wang, X.W. Gan, M.H. Hu, E.X. Zhang, W.Q. Qin, and G.Z. Qiu, Cooperative bioleaching of chalcopyrite and silver-bearing tailing by mixed moderately thermophilic culture:An emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis, Miner. Eng., 81(2015), p. 29.
|
[83] |
L.Y. Ma, X.J. Wang, X.D. Liu, S.Q. Wang, and H.M. Wang, Intensified bioleaching of chalcopyrite by communities with enriched ferrous or sulfur oxidizers, Bioresour. Technol., 268(2018), p. 415.
|
[84] |
Z.Z. Huang, S.S. Feng, Y.J. Tong, and H.L. Yang, Enhanced "contact mechanism" for interaction of extracellular poly-meric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus, J. Environ. Manage., 242(2019), p. 11.
|
[85] |
A. Ahmadi, M. Ranjbar, M. Schaffie, and J. Petersen, Kinetic modeling of bioleaching of copper sulfide concentrates in conventional and electrochemically controlled systems, Hydrometallurgy, 127(2012), p. 16.
|
[86] |
C.S. Davis-Belmar, D. Cautivo, C. Demergasso, and G. Rautenbach, Bioleaching of copper secondary sulfide ore in the presence of chloride by means of inoculation with chlo-ride-tolerant microbial culture, Hydrometallurgy, 150(2014), p. 308.
|
[87] |
C. Castro and E. Donati, Effects of different energy sources on cell adhesion and bioleaching of a chalcopyrite concen-trate by extremophilic archaeon Acidianus copahuensis, Hy-drometallurgy, 162(2016), p. 49.
|
[88] |
Y.G. Wang, L.J. Su, W.M. Zeng, G.Z. Qiu, L.L. Wan, X.H. Chen, and H.B. Zhou, Optimization of copper extraction for bioleaching of complex Cu-polymetallic concentrate by moderate thermophiles, Trans. Nonferrous Met. Soc. China, 24(2014), No. 4, p. 1161.
|
[89] |
A.H. Kaksonen, S. Särkijärvi, J.A. Puhakka, E. Peuraniemi, and O.H. Tuovinen, Chemical and bacterial leaching of met-als from a smelter slag in acid solutions, Hydrometallurgy, 159(2016), p. 46.
|
[90] |
P. Sarfo, A. Das, G. Wyss, and C. Young, Recovery of metal values from copper slag and reuse of residual secondary slag, Waste Manage., 70(2017), p. 272.
|
[91] |
Z.L. Wu, L.C. Zou, J.H. Chen, X.K. Lai, and Y.G. Zhu, Col-umn bioleaching characteristic of copper and iron from Zi-jinshan sulfide ores by acid mine drainage, Int. J. Miner. Process., 149(2016), p. 18.
|
[92] |
M. Zhang, X.M. Guo, B. Tian, J. Wang, S.Y. Qi, Y.F. Yang, and B.P. Xin, Improved bioleaching of copper and zinc from brake pad waste by low-temperature thermal pretreatment and its mechanisms, Waste Manage., 87(2019), p. 629.
|
[93] |
G.J. Olson, J.A. Brierley, and C.L. Brierley, Bioleaching re-view part B:progress in bioleaching:applications of micro-bial processes by the minerals industries, Appl. Microbiol. Biotechnol., 63(2003), No. 3, p. 249.
|
[94] |
W.Y. Liu and G. Granata, Temperature control in copper heap bioleaching, Hydrometallurgy, 176(2018), p. 26.
|
[95] |
J. Petersen and D.G. Dixon, Principles, mechanisms and dy-namics of chalcocite heap bioleaching, Microbial Processing of Metal Sulfides, Springer, Dordrecht, 2007, p. 193.
|
[96] |
P.R. Norris, L. Laigle, T.J. Ogden, and O.J.P. Gould, Selec-tion of thermophiles for base metal sulfide concentrate leaching, Part I:Effect of temperature on copper concentrate leaching and silver recovery, Miner. Eng., 106(2017), p. 7.
|
[97] |
Y.G. Wang, X.H. Chen, and H.B. Zhou, Disentangling effects of temperature on microbial community and copper extraction in column bioleaching of low grade copper sulfide, Bioresour. Technol., 268(2018), p. 480.
|
[98] |
B.W. Chen and J.K. Wen, Feasibility study on heap bi-oleaching of chalcopyrite, Rare Met., 32(2013), No. 5, p. 524.
|
[99] |
T. Huang and D.W. Li, Presentation on mechanisms and ap-plications of chalcopyrite and pyrite bioleaching in biohy-drometallurgy-a presentation, Biotechnol. Rep., 4(2014), p. 107.
|
[100] |
S. Hedrich, C. Joulian, T. Graupner, A. Schippers, and A.G. Guézennec, Enhanced chalcopyrite dissolution in stirred tank reactors by temperature increase during bioleaching, Hydro-metallurgy, 179(2018), p. 125.
|
[101] |
R.H. Liu, J. Chen, W.B. Zhou, H.N. Cheng, and H.B. Zhou, Insight to the early-stage adsorption mechanism of moder-ately thermophilic consortia and intensified bioleaching of chalcopyrite, Biochem. Eng. J., 144(2019), p. 40.
|
[102] |
A.E. Anderson and F.K. Cameron, Recovery of copper by leaching, Ohio Copper Co. of Utah, AIME TRANS, 71(1926), p. 31.
|
[103] |
S.F. Yu, A.X. Wu, and Y.M. Wang, Insight into the structural evolution of porous and fractured media by forced aeration during heap leaching, Int. J. Min. Sci. Technol., 29(2018), No. 5, p. 803.
|
[104] |
L. Ahonen and O.H. Touvinen, Bacterial leaching of com-plex sulfide ore samples in bench-scale column reactors, Hydrometallurgy, 37(1995), No. 1, p. 1.
|
[105] |
V.K. Nguyen, M.G. Ha, S. Shin, M. Seo, J. Jang, S. Jo, D. Kim, S. Lee, Y. Jung, P. Kang, C. Shin, and Y. Ahn, Electro-chemical effect on bioleaching of arsenic and manganese from tungsten mine wastes using Acidithiobacillus spp, J. Environ. Manage., 223(2018), p. 852.
|
[106] |
W.J. Schlitt, History of forced aeration in copper sulfide leaching, Min. Metall. Explor., 23(2006), No. 2, p. 57.
|
[107] |
H.M. Lizama, Copper bioleaching behaviour in an aerated heap, Int. J. Miner. Process., 62(2011), No. 1-4, p. 257.
|
[108] |
D.G. Dixon, Analysis of heat conservation during copper sulphide heap leaching, Hydrometallurgy, 58(2000), No. 1, p. 27.
|
[109] |
H.J. Wang, A.X. Wu, X. Zhou, S.Y. Wang, and J. Zhang, Accelerating column leaching trial on copper sulfide ore, Rare Met., 27(2008), No. 1, p. 95.
|
[110] |
A.G. Guezennec, C. Joulian, J. Jacob, A. Archane, D. Ibarra, R. de Buyer, F. Bodénan, and P. d'Huguesa, Influence of dissolved oxygen on the bioleaching efficiency under oxygen enriched atmosphere, Miner. Eng., 106(2017), p. 64.
|
[111] |
S. Panda, A. Akcil, N. Pradhan, and H. Deveci, Current sce-nario of chalcopyrite bioleaching:A review on the recent ad-vances to its heap-leach technology, Bioresour. Technol., 196(2015), p. 694.
|
[112] |
A. Mazuelos, C.J. García-Tinajero, R. Romero, N. Iglesias, and F. Carranza, Oxygen solubility in copper bioleaching so-lutions, Hydrometallurgy, 167(2017), p. 1.
|
[113] |
C.M. Ai, A.X. Wu, Y.M. Wang, and C.L. Hou, Optimization and mechanism of surfactant accelerating leaching test, J. Cent. South Univ., 23(2016), No. 5, p. 1032.
|
[114] |
S. Panda, A. Biswal, S. Mishra, P.K. Panda, N. Pradhan, U. Mohapatra, L.B. Sukla, B.K. Mishra, and A. Akcil, Reduc-tive dissolution by waste newspaper for enhanced me-so-acidophilic bioleaching of copper from low grade chalco-pyrite:A new concept of biohydrometallurgy, Hydrometal-lurgy, 153(2015), p. 98.
|
[115] |
W. Sand and T. Gehrke, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria, Res. Micro-biol., 157(2006), No. 1, p. 49.
|
[116] |
S.H. Yin, W. Chen, X. Chen, and L.M. Wang, Bacteri-al-mediated recovery of copper from low-grade copper sul-phide using acid-processed rice straw, Bioresour. Technol., 288(2019), art. No. 121605.
|
[117] |
W.H. Gu, J.F. Bai, B. Dong, X.N. Zhuang, J. Zhao, C.L. Zhang, J.W. Wang, and K.M. Shih, Catalytic effect of gra-phene in bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans, Hydrometallurgy, 171(2017), p. 172.
|
[118] |
G. Debernardi, J.C. Gentina, P. Albistur, and G. Slanzi, Evaluation of processing options to avoid the passivation of chalcopyrite, Int. J. Miner. Process., 125(2013), p. 1.
|
[119] |
A.A. Peng, H.C. Liu, Z.Y. Nie, and J.L. Xia, Effect of sur-factant Tween-80 on sulfur oxidation and expression of sulfur metabolism relevant genes of Acidithiobacillus ferrooxidans, Trans. Nonferrous Met. Soc. China, 22(2012), No. 12, p. 3147.
|
[120] |
V. Gopinath, S. Saravanan, A.R. Al-Maleki, M. Ramesh, and J. Vadivelu, A review of natural polysaccharides for drug delivery applications:Special focus on cellulose, starch and glycogen, Biomed. Pharmacother., 107(2018), p. 96.
|
[121] |
H.R. Watling, The bioleaching of nickel-copper sulfides, Hy-drometallurgy, 91(2008), No. 1-4, p. 70.
|
[122] |
R.Y. Zhang, D.Z. Wei, Y.B. Shen, W.G. Liu, T. Lu, and C. Han, Catalytic effect of polyethylene glycol on sulfur oxida-tion in chalcopyrite bioleaching by Acidithiobacillus fer-rooxidans, Miner. Eng., 95(2016), p. 74.
|
[123] |
W.P. Liu and X.F. Yin, Recovery of copper from copper slag using a microbial fuel cell and characterization of its electro-genesis, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 621.
|
[124] |
S.H. Wang, Y. Zheng, W.F. Yan, L.X. Chen, G.D. Mahade-van, and F. Zhao, Enhanced bioleaching efficiency of metals from E-wastes driven by biochar, J. Hazard. Mater., 320(2016), p. 393.
|
[125] |
Y. Jia, H.Y. Sun, Q.Y. Tan, H.S. Gao, X.L. Feng, R.M. Ruan, Linking leach chemistry and microbiology of low-grade copper ore bioleaching at different temperature, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 271.
|