Jit Sarkar, and D. K. Das, Enhanced strength in novel nanocomposites prepared by reinforcing graphene in red soil and fly ash bricks, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp.1322-1328. https://dx.doi.org/10.1007/s12613-019-1835-4
Cite this article as: Jit Sarkar, and D. K. Das, Enhanced strength in novel nanocomposites prepared by reinforcing graphene in red soil and fly ash bricks, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp.1322-1328. https://dx.doi.org/10.1007/s12613-019-1835-4
Research Article

Enhanced strength in novel nanocomposites prepared by reinforcing graphene in red soil and fly ash bricks

Author Affilications
Funds: 

We would like to thank Dr. Sukadev Sahoo, Department of Physics, National Institute of Technology Durgapur, for his constant guidance and financial support for carrying out this work. We would also like to thank Dr. Supriya Pal, Dr. A.K. Samanta, and Mr. Ram Bagdi, Department of Civil Engineering, National Institute of Technology Durgapur, for providing laboratory access and assistance with testing the samples. We also acknowledge the Centre of Excellence, Technical Education Quality Improvement Programme (Phase II), National Institute of Technology Durgapur, for providing partial assistance for the preparation of graphene samples. We would also like to thank Mr. Debabrata Mandal at Indian Institute of Technology Kharagpur, for his fruitful discussions regarding the SEM images.

  • Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were reinforced with various amounts of graphene, and the effect of graphene on the strength of these newly developed nanocomposites was studied. The fly ash brick nanocomposite samples were cured as per their standard curing time, and the burnt red soil brick nanocomposite samples were merely dried in the sun instead of being subjected to the traditional heat treatment for days to achieve sufficient strength. The water absorption ability of the fly ash bricks was also discussed. The compressive strength of all of the graphene-reinforced nanocomposite samples was tested, along with that of some standard (without graphene) composite samples with the same dimensions, to evaluate the effects of the addition of various amounts of graphene on the compressive strength of the bricks.
  • A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater., 6(2007), p. 183.
    A.K. Geim and A.H. MacDonald, Graphene: Exploring carbon flatland, Phys. Today, 60(2007), No. 8, p. 35.
    J. de La Fuente, Graphene-What is it?[2017-10-10]. https://www.graphenea.com/pages/graphene.
    I.A. Ovid'ko, Mechanical properties of graphene, Rev. Adv. Mater. Sci., 34(2013), No. 1, p. 1.
    S.A.H. Kordkheili and H. Moshrefzadeh-Sani, Mechanical properties of double-layered graphene sheets, Comput. Mater. Sci., 69(2013), p. 335.
    R. Grantab, V.B. Shenoy, and R.S. Ruoff, Anomalous strength characteristics of tilt grain boundaries in graphene, Science, 330(2010), No. 6006, p. 946.
    F. Scarpa, S. Adhikari, and A.S. Phani, Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology, 20(2009), No. 6, art. No. 065709.
    Y.Y. Zhang and Y.T. Gu, Mechanical properties of graphene: Effects of layer number, temperature and isotope, Comput. Mater. Sci., 71(2013), p. 197.
    H. Zhao, K. Min, and N.R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett., 9(2009), No. 8, p. 3012.
    W.W. Cai, A.L. Moore, Y.R. Zhu, X.S. Li, S.S. Chen, L. Shi, and R.S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett., 10(2010), No. 5, p. 1645.
    C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R.R. Nair, and A.K. Geim, Thermal conductivity of graphene in corbino membrane geometry, ACS Nano, 4(2010), No. 4, p. 1889.
    X.F. Xu, L.F.C. Pereira, Y. Wang, J. Wu, K.W. Zhang, X.M. Zhao, S. Bae, C.T. Bui, R.G. Xie, J.T.L. Thong, B.H. Hong, K.P. Loh, D. Donadio, B.W. Li, and B. Özyilmaz, Length-dependent thermal conductivity in suspended single-layer graphene, Nat. Commun., 5(2014), art. No. 3689.
    J.U. Lee, D. Yoon, H. Kim, S.W. Lee, and H. Cheong, Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy, Phys. Rev. B, 83(2011), art. No. 081419.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8(2008), No. 3, p. 902.
    B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, and G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technol., 221(2012), p. 351.
    J.K. Wassei and R.B. Kaner, Graphene, a promising transparent conductor, Mater. Today, 13(2010), No. 3, p. 52.
    M.J. Deka, U. Baruah, and D. Chowdhury, Insight into electrical conductivity of graphene and functionalized graphene: Role of lateral dimension of graphene sheet, Mater. Chem. Phys., 163(2015), p. 236.
    X.Y. Fang, X.X. Yu, H.M. Zheng, H.B. Jin, L. Wang, and M.S. Cao, Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets, Phys. Lett. A, 379(2015), No. 37, p. 2245.
    T. Ando, The electronic properties of graphene and carbon nanotubes, NPG Asia Mater., 1(2009), No. 1, p. 17.
    M.O. Goerbig and N. Regnault, Theoretical aspects of the fractional quantum Hall effect in graphene, Phys. Scr., T146(2012), art. No. 014017.
    D.A. Abanin, I. Skachko, X. Du, E.Y. Andrei, and L.S. Levitov, Fractional quantum Hall effect in suspended graphene: Transport coefficients and electron interaction strength, Phys. Rev. B, 81(2010), art. No. 115410.
    R. Nandkishore and L. Levitov, Quantum anomalous Hall state in bilayer graphene, Phys. Rev. B, 82(2010), art. No. 115124.
    S. Sahoo and S. Das, Supersymmetric structure of fractional quantum Hall effect graphene, Indian J. Pure Appl. Phys., 47(2009), No. 3, p. 186.
    F. Finocchiaro, F. Guinea, and P. San-Jose, Quantum spin Hall effect in twisted bilayer graphene, 2D Mater., 4(2017), art. No. 025027.
    S. Sahoo, Quantum Hall effect in graphene: Status and prospects, Indian J. Pure Appl. Phys., 49(2011), No. 6, p. 367.
    S.E. Zhu, S.J. Yuan, and G.C.A.M. Janssen, Optical transmittance of multilayer graphene, Europhys. Lett., 108(2014), art. No. 17007.
    L.A. Falkovsky, Optical properties of graphene, J. Phys. Conf. Ser., 129(2008), art. No. 012004.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320(2008), p. 5881, p. 1308.
    S.S.R.K.C. Yamijala, M. Mukhopadhyay, and S.K. Pati, Linear and nonlinear optical properties of graphene quantum dots: a computational study, J. Phys. Chem. C, 119(2015), No. 21, p. 12079.
    L. Xiao, Y. Xu, B.L. Zhang, R. Hao, H.S. Chen, and E.P. Li, Unidirectional surface plasmons in nonreciprocal graphene, New J. Phys., 15(2013), art. No.113003.
    Z.W. Zheng, C.J. Zhao, S.B. Lu, Y. Chen, Y. Li, H. Zhang, and S.C. Wen, Microwave and optical saturable absorption in graphene, Opt. Express, 20(2012), No. 21, p. 23201.
    S.H. Xie, Y.Y. Liu, and J.Y. Li, Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes, Appl. Phys. Lett., 92(2008), art. No. 243121.
    H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I. Dlouhý, and M.J. Reece, Graphene reinforced alumina nano-composites, Carbon, 64(2013), p. 359.
    G.B. Yadhukulakrishnan, S. Karumuri, A. Rahman, R.P. Singh, A.K. Kalkan, and S.P. Harimkar, Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites, Ceram. Int., 39(2013), No. 6, p. 6637.
    M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S.R. Wang, X.D. Tang, and X.W. Wang, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Composites Part B, 60(2014), p. 111.
    H.G.P. Kumar and M.A. Xavior, Graphene reinforced metal matrix composite (GRMMC): a review, Procedia Eng., 97(2014), p. 1033.
    W.M. Tian, S.M. Li, B. Wang, X. Chen, J.H. Liu, and M. Yu, Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 723.
    A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Graphene reinforced metal and ceramic matrix composites: a review, Int. Mater. Rev., 62(2017), No. 5, p. 241.
    K. Gong, Z. Pan, A.H. Korayem, L. Qiu, D. Li, F. Collins, C.M. Wang, and W.H. Duan, Reinforcing effects of graphene oxide on portland cement paste, J. Mater. Civ. Eng., 27(2015), No. 2, art. No. A4014010.
    S. Chuah, Z. Pan, J.G. Sanjayan, C.M. Wang, and W.H. Duan, Nano reinforced cement and concrete composites and new perspective from graphene oxide, Constr. Build. Mater., 73(2014), p. 113.
    M.L. Cao, H.X. Zhang, and C. Zhang, Effect of graphene on mechanical properties of cement mortars, J. Cent. South Univ., 23(2016), No. 4, p. 919.
    V.R.J. Antonio, C.S. German, and M.M.E. Raymundo, Optimizing content graphene oxide in high strength concrete, Int. J. Sci. Res. Manage., 4(2016), No. 6, p. 4324.
    P.T. Dalla, I.Κ. Tragazikis, D.A. Exarchos, K. Dassios, and T.E. Matikas, Cement-based materials with graphene nanophase, Proceedings of SPIE—The International Society for Optical Engineering, Portland, 2017.
    S.H. Lv, S. Ting, J.J. Liu, and Q.F. Zhou, Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness, CrystEngComm, 16(2014), p. 8508.
    B.M. Wang, R.S. Jiang, and Z.L. Wu, Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite, Nanomaterials, 6(2016), No. 11, p. 200.
    Z.Y. Lu, D.S. Hou, L.S. Meng, G.X. Sun, C. Lu, and Z.J. Li, Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties, RSC Adv., 5(2015), p. 100598.
    G. Yakovlev, G. Pervushin, I. Maeva, J. Keriene, I. Pudov, A. Shaybadullina, A. Buryanov, A. Korzhenko, and S. Senkov, Modification of construction materials with multi-walled carbon nanotubes, Procedia Eng., 57(2013), p. 407.
    R. Siddique and A. Mehta, Effect of carbon nanotubes on properties of cement mortars, Constr. Build. Mater., 50(2014), p. 116.
  • Related Articles

    [1]Jin-yang Zhu, Li-ning Xu, Min-xu Lu, Wei Chang. Cathodic reaction mechanisms in CO2 corrosion of low-Cr steels [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11): 1405-1414. DOI: 10.1007/s12613-019-1861-2
    [2]Li-ying Huang, Kuai-she Wang, Wen Wang, Kai Zhao, Jie Yuan, Ke Qiao, Bing Zhang, Jun Cai. Mechanical and corrosion properties of low-carbon steel prepared by friction stir processing [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(2): 202-209. DOI: 10.1007/s12613-019-1725-9
    [3]Dong-liang Li, Gui-qin Fu, Miao-yong Zhu, Qing Li, Cheng-xiang Yin. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(3): 325-338. DOI: 10.1007/s12613-018-1576-9
    [4]Qing-he Zhao, Wei Liu, Jian-wei Yang, Yi-chun Zhu, Bin-li Zhang, Min-xu Lu. Corrosion behavior of low alloy steels in a wet–dry acid humid environment [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(9): 1076-1086. DOI: 10.1007/s12613-016-1325-x
    [5]Qing-he Zhao, Wei Liu, Jie Zhao, Dong Zhang, Peng-cheng Liu, Min-xu Lu. Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2–O2–H2S–SO2 wet–dry corrosion environment of cargo oil tankers [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(8): 829-841. DOI: 10.1007/s12613-015-1140-9
    [6]Yu-bing Guo, Chong Li, Yong-chang Liu, Li-ming Yu, Zong-qing Ma, Chen-xi Liu, Hui-jun Li. Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(6): 604-612. DOI: 10.1007/s12613-015-1113-z
    [7]Le Wang, Bing Li, Miao Shen, Shi-yan Li, Jian-guo Yu. Corrosion resistance of steel materials in LiCl-KCl melts [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(10): 930-933. DOI: 10.1007/s12613-012-0649-4
    [8]Jin-jie Shi, Wei Sun. Electrochemical and analytical characterization of three corrosion inhibitors of steel in simulated concrete pore solutions [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(1): 38-47. DOI: 10.1007/s12613-012-0512-7
    [9]Oğuzhan Keleştemur. Utilization of waste vehicle tires in concrete and its effect on the corrosion behavior of reinforcing steels [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(3): 363-370. DOI: 10.1007/s12613-010-0319-3
    [10]Shu-tao Wang, Shan-wu Yang, Ke-wei Gao, Xin-lai He. Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(1): 58-64. DOI: 10.1016/S1674-4799(09)60010-8
  • Cited by

    Periodical cited type(36)

    1. Chen Shenggang, Men Liangxiao, Zhang Wuman, et al. In-depth exploration for the effect of mill scale on passivation capability of various steels in simulated concrete pore solution. Construction and Building Materials, 2025, 472: 140860. DOI:10.1016/j.conbuildmat.2025.140860
    2. Yu Zhang, Ben Li, Chen Zhang, et al. Research on the mechanism of chlorine corrosion resistance of graphite tailings modified recycled coarse aggregate concrete: Corrosion product transformation and multi-scale mathematical characterization model. Corrosion Science, 2024, 233: 112099. DOI:10.1016/j.corsci.2024.112099
    3. Jinyang Jiang, Zhongyi Xin, Le Guo, et al. Early Corrosion Behavior of Cr10Mo1 Alloy Corrosion-Resistant Steel Bars in Seawater–Sea-Sand Concrete. Journal of Materials in Civil Engineering, 2024, 36(10) DOI:10.1061/JMCEE7.MTENG-18322
    4. Shady Gomaa, Ossama El-Hossieny, Mohammed Alnaggar. Effects of mill scale and varying exposure conditions on corrosion behavior of A572 structural steel. Construction and Building Materials, 2024, 440: 136995. DOI:10.1016/j.conbuildmat.2024.136995
    5. Nikolaos Chousidis, Stylianos Polymenis, George Batis. Impact of high volume E.M.D. residue on the corrosion resistance and mechanical properties of construction materials in sulfate environment. Materials Research Express, 2023, 10(5): 056508. DOI:10.1088/2053-1591/acd61c
    6. Blake C. Stewart, Haley R. Doude, Shiraz Mujahid, et al. Novel Selective Laser Printing Via Powder Bed Fusion of Ionic Liquid Harvested Iron for Martian Additive Manufacturing. Journal of Materials Engineering and Performance, 2022, 31(8): 6060. DOI:10.1007/s11665-022-06730-7
    7. Jing Ming, Xiaocheng Zhou, Linhua Jiang, et al. Corrosion resistance of low-alloy steel in concrete subjected to long-term chloride attack: Characterization of surface conditions and rust layers. Corrosion Science, 2022, 203: 110370. DOI:10.1016/j.corsci.2022.110370
    8. Yufan Li, Dongmei Fu, Xuequn Cheng, et al. Developing a regional environmental corrosion model for Q235 carbon steel using a data-driven construction method. Frontiers in Materials, 2022, 9 DOI:10.3389/fmats.2022.1084324
    9. Jing Ming, Jinjie Shi. Influence of surface condition, steel type and alkaline solution on passivation capability of reinforcing steels. European Journal of Environmental and Civil Engineering, 2022, 26(6): 2304. DOI:10.1080/19648189.2020.1762748
    10. Prasanna Kumar Behera, Sudhir Misra, K. Mondal. Corrosion behavior of bent plain reinforcing bars used in concrete. Materials and Structures, 2022, 55(2) DOI:10.1617/s11527-022-01886-z
    11. Nanqiao You, Jinjie Shi, Yamei Zhang. Electrochemical performance of low-alloy steel and low-carbon steel immersed in the simulated pore solutions of alkali-activated slag/steel slag pastes in the presence of chlorides. Corrosion Science, 2022, 205: 110438. DOI:10.1016/j.corsci.2022.110438
    12. Farshad Teymouri, Saeed Reza Allahkaram, Iman Azamian, et al. Matrix/rebar rehabilitation through electrochemical injection of Ce(III)/imidazolium-based ILs as a novel anti-corrosion pore-blocking technique for increasing the sustainability of reinforced cementitious materials. Corrosion Science, 2022, 208: 110687. DOI:10.1016/j.corsci.2022.110687
    13. Jinjie Shi, Miao Wu, Jing Ming. In-depth insight into the role of molybdate in corrosion resistance of reinforcing steel in chloride-contaminated mortars. Cement and Concrete Composites, 2022, 132: 104628. DOI:10.1016/j.cemconcomp.2022.104628
    14. Prasanna Kumar Behera, Prvan Kumar Katiyar, Sudhir Misra, et al. Effect of Pre-induced Plastic Strains on the Corrosion Behavior of Reinforcing Bar in 3.5 pct NaCl Solution. Metallurgical and Materials Transactions A, 2021, 52(2): 605. DOI:10.1007/s11661-020-06088-2
    15. Prasanna Kumar Behera, Sudhir Misra, K. Mondal. Corrosion of Strained Plain Rebar in Chloride-Contaminated Mortar and Novel Approach to Estimate the Corrosion Amount from Rust Characterization. Journal of Materials in Civil Engineering, 2021, 33(10) DOI:10.1061/(ASCE)MT.1943-5533.0003912
    16. Kotaro Doi. Development of Hyperbaric-Oxygen Accelerated Corrosion Test and Application to Study on Corrosion of Reinforcing Steel in Concrete. Materia Japan, 2021, 60(5): 296. DOI:10.2320/materia.60.296
    17. Jinjie Shi, Jing Ming, Miao Wu. Electrochemical behavior and corrosion products of Cr-modified reinforcing steels in saturated Ca(OH)2 solution with chlorides. Cement and Concrete Composites, 2020, 110: 103587. DOI:10.1016/j.cemconcomp.2020.103587
    18. Jing Ming, Miao Wu, Jinjie Shi. Corrosion Resistance of a Cr-Bearing Low-Alloy Reinforcing Steel: Effect of Surface Condition, Alkaline Solution, and Chloride Content. Journal of Materials in Civil Engineering, 2020, 32(4) DOI:10.1061/(ASCE)MT.1943-5533.0003117
    19. Jing Ming, Jinjie Shi, Wei Sun. Effects of Mill Scale and Steel Type on Passivation and Accelerated Corrosion Behavior of Reinforcing Steels in Concrete. Journal of Materials in Civil Engineering, 2020, 32(4) DOI:10.1061/(ASCE)MT.1943-5533.0003139
    20. Kotaro Doi, Sachiko Hiromoto, Tadashi Shinohara, et al. Role of mill scale on corrosion behavior of steel rebars in mortar. Corrosion Science, 2020, 177: 108995. DOI:10.1016/j.corsci.2020.108995
    21. Prasanna Kumar Behera, Sudhir Misra, K. Mondal. Corrosion Behavior of Strained Rebar in Simulated Concrete Pore Solution. Journal of Materials Engineering and Performance, 2020, 29(3): 1939. DOI:10.1007/s11665-020-04708-x
    22. Jinjie Shi, Jing Ming, Danqian Wang, et al. Improved corrosion resistance of a new 6% Cr steel in simulated concrete pore solution contaminated by chlorides. Corrosion Science, 2020, 174: 108851. DOI:10.1016/j.corsci.2020.108851
    23. Nanqiao You, Jinjie Shi, Yamei Zhang. Corrosion behaviour of low-carbon steel reinforcement in alkali-activated slag-steel slag and Portland cement-based mortars under simulated marine environment. Corrosion Science, 2020, 175: 108874. DOI:10.1016/j.corsci.2020.108874
    24. Jing Ming, Jin-jie Shi. Chloride resistance of Cr-bearing alloy steels in carbonated concrete pore solutions. International Journal of Minerals, Metallurgy and Materials, 2020, 27(4): 494. DOI:10.1007/s12613-019-1920-8
    25. Hong-liang Xiang, Yu-rui Hu, Hua-tang Cao, et al. Erosion–corrosion behavior of SAF3207 hyper-duplex stainless steel. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11): 1415. DOI:10.1007/s12613-019-1825-6
    26. Jing Ming, Jinjie Shi. Distribution of corrosion products at the steel-concrete interface: Influence of mill scale properties, reinforcing steel type and corrosion inducing method. Construction and Building Materials, 2019, 229: 116854. DOI:10.1016/j.conbuildmat.2019.116854
    27. Jinjie Shi, Jing Ming, Wei Sun. Electrochemical behaviour of a novel alloy steel in alkali-activated slag mortars. Cement and Concrete Composites, 2018, 92: 110. DOI:10.1016/j.cemconcomp.2018.06.004
    28. Jinjie Shi, Jing Ming, Wei Sun. Influence of Surface Condition on the Electrochemical Behavior of Alloy Steel in Saturated Ca(OH)2 Solution. Journal of Materials in Civil Engineering, 2018, 30(9) DOI:10.1061/(ASCE)MT.1943-5533.0002423
    29. Jinjie Shi, Danqian Wang, Jing Ming, et al. Passivation and Pitting Corrosion Behavior of a Novel Alloy Steel (00Cr10MoV) in Simulated Concrete Pore Solution. Journal of Materials in Civil Engineering, 2018, 30(10) DOI:10.1061/(ASCE)MT.1943-5533.0002455
    30. Johan Ahlström, Johan Tidblad, Luping Tang, et al. Electrochemical Properties of Oxide Scale on Steel Exposed in Saturated Calcium Hydroxide Solutions with or without Chlorides. International Journal of Corrosion, 2018, 2018: 1. DOI:10.1155/2018/5623504
    31. Jinjie Shi, Danqian Wang, Jing Ming, et al. Long-Term Electrochemical Behavior of Low-Alloy Steel in Simulated Concrete Pore Solution with Chlorides. Journal of Materials in Civil Engineering, 2018, 30(4) DOI:10.1061/(ASCE)MT.1943-5533.0002194
    32. Gang Niu, Yin-li Chen, Hui-bin Wu, et al. Corrosion behavior of high-strength spring steel for high-speed railway. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(5): 527. DOI:10.1007/s12613-018-1599-2
    33. Jing Ming, Jinjie Shi, Wei Sun. Effect of mill scale on the long-term corrosion resistance of a low-alloy reinforcing steel in concrete subjected to chloride solution. Construction and Building Materials, 2018, 163: 508. DOI:10.1016/j.conbuildmat.2017.12.125
    34. Stefanie v. Greve‐Dierfeld, Jan Bisschop, Yves Schiegg. Nichtrostende Bewehrungsstähle zur Verlängerung der korrosionsfreien Lebensdauer von Stahlbetonbauwerken. Beton- und Stahlbetonbau, 2017, 112(9): 601. DOI:10.1002/best.201700038
    35. Jinjie Shi, Jing Ming, Wei Sun. Passivation and chloride-induced corrosion of a duplex alloy steel in alkali-activated slag extract solutions. Construction and Building Materials, 2017, 155: 992. DOI:10.1016/j.conbuildmat.2017.08.117
    36. Jin-jie Shi, Jing Ming, Xin Liu. Pitting corrosion resistance of a novel duplex alloy steel in alkali-activated slag extract in the presence of chloride ions. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(10): 1134. DOI:10.1007/s12613-017-1504-4

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (749) PDF downloads (23) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return