Cite this article as: |
Xiao-lu Yuan, Yu-ting Zheng, Xiao-hua Zhu, Jin-long Liu, Jiang-wei Liu, Cheng-ming Li, Peng Jin, and Zhan-guo Wang, Recent progress in diamond-based MOSFETs, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp. 1195-1205. https://doi.org/10.1007/s12613-019-1843-4 |
Cheng-ming Li E-mail: chengmli@mater.ustb.edu.cn
Peng Jin E-mail: pengjin@semi.ac.cn
[1] |
L. Reggiani, S. Bosi, C. Canali, F. Nava, and S.F. Kozlov, Hole-drift velocity in natural diamond, Phys. Rev. B, 23(1981), No. 6, p. 3050.
|
[2] |
J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D.J. Twitchen, A.J. Whitehead, S.E. Coe, and G.A. Scarsbrook, High carrier mobility in single-crystal plasma-deposited diamond, Science, 297(2002), No. 5587, p. 1670.
|
[3] |
C.J.H. Wort and R.S. Balmer, Diamond as an electronic material, Mater. Today, 11(2008), No. 1-2, p. 22.
|
[4] |
S. Shikata, Single crystal diamond wafers for high power electronics, Diamond Relat. Mater., 65(2016), p. 168.
|
[5] |
H. Umezawa, M. Nagase, Y. Kato, and S. Shikata, High temperature application of diamond power device, Diamond Relat. Mater., 24(2012), p. 201.
|
[6] |
H. Kawarada, T. Yamada, D. Xu, H. Tsuboi, Y. Kitabayashi, D. Matsumura, M. Shibata, T. Kudo, M. Inaba, and A. Hiraiwa, Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications, Sci. Rep., 7(2017), art. No. 42368.
|
[7] |
S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, New Jersey, 2006.
|
[8] |
B.J. Baliga, Fundamentals of Power Semiconductor Device, Springer, Boston, MA, 2008.
|
[9] |
J.B. Cui, J. Ristein, and L. Ley, Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface, Phys. Rev. Lett., 81(1998), No. 2, p. 429.
|
[10] |
K.G. Crawford, L. Cao, D. Qi, A. Tallaire, E. Limiti, C. Verona, A.T.S. Wee, and D.A.J. Moran, Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability, Appl. Phys. Lett., 108(2016), No. 4, art. No. 042103.
|
[11] |
M. Kasu, Diamond field-effect transistors for RF power electronics: Novel NO2 hole doping and low-temperature deposited Al2O3 passivation, Jpn. J. Appl. Phys., 56(2016), No. 1S, art. No. 01AA01.
|
[12] |
M. Kasu, K. Hirama, K. Harada, and T. Oishi, Study on capacitance-voltage characteristics of diamond field-effect transistors with NO2 hole doping and Al2O3 gate insulator layer, Jpn. J. Appl. Phys., 55(2016), No. 4, art. No. 041301.
|
[13] |
F. Maier, M. Riedel. B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett., 85(2000), No. 16, p. 3472.
|
[14] |
J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, and Y. Koide, Electrical characteristics of hydrogen-terminated diamond metal-oxide-semiconductor with atomic layer deposited HfO2 as gate dielectric, Appl. Phys. Lett., 102(2013), No. 11, art. No. 112910.
|
[15] |
M. Syamsul, Y. Kitabayashi, D. Matsumura, T. Saito, Y. Shintani, and H. Kawarada, High voltage breakdown (1.8 kV) of hydrogenated black diamond field effect transistor, Appl. Phys. Lett., 109(2016), No. 20, art. No. 203504.
|
[16] |
H. Kawarada, T. Yamada, D. Xu, Y. Kitabayashi, M. Shibata, D. Matsumura, M. Kobayashi, T. Saito, T. Kudo, M. Inaba, and A. Hiraiwa, Diamond MOSFETs using 2D hole gas with 1700V breakdown voltage,[in] Proceedings of the 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Munich, 2016, p. 483.
|
[17] |
Y. Kitabayashi, T. Kudo, H. Tsuboi, T. Yamada, D. Xu, M. Shibata, D. Matsumura, Y. Hayashi, M. Syamsul, M. Inaba, A. Hiraiwa, and H. Kawarada, Normally-off C–H diamond MOSFETs with partial C–O channel achieving 2kV breakdown voltage, IEEE Elect. Dev. Lett., 38(2017), No. 3, p. 363.
|
[18] |
D. Takeuchi, H. Kato, G.S. Ri, T. Yamada, P.R. Vinod, D. Hwang, C.E. Nebel, H. Okushi, and S. Yamasaki, Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces, Appl. Phys. Lett., 86(2005), No. 15, art. No. 152103.
|
[19] |
G.S. Gildenblat, S.A. Grot, C.W. Hatfield, and A.R. Badzian, High-temperature thin-film diamond field-effect transistor fabricated using a selective growth method, IEEE Elect. Dev. Lett., 12(1991), No. 2, p. 37.
|
[20] |
M. Aoki and H. Kawarada, Electric properties of metal/diamond interfaces utilizing hydrogen-terminated surfaces of homoepitaxial diamonds, Jpn. J. Appl. Phys., 33(1994), No. 5B, p. L708.
|
[21] |
K.K. Kovi, Ö. Vallin, S. Majdi, and J. Isberg, Inversion in metal-oxide-semiconductor capacitors on boron-doped diamond, IEEE Elect. Dev. Lett., 36(2015), No. 6, p. 603.
|
[22] |
J.L. Liu, L.X. Chen, Y.T. Zheng, J.T. Wang, Z.H. Feng, and C.M. Li, Carrier transport characteristics of H-terminated diamond films prepared using molecular hydrogen and atomic hydrogen, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 850.
|
[23] |
M. Imura, R. Hayakawa, H. Ohsato, E. Watanabe, D. Tsuya, T. Nagata, M.Y. Liao, Y. Koide, J. Yamamoto, K. Ban, M. Iwaya, and H. Amano, Development of AlN/diamond heterojunction field effect transistors, Diamond Relat. Mater., 24(2012), p. 206.
|
[24] |
J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, A. Tanaka, H. Iwai, and Y. Koide, Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors, J. Appl. Phys., 114(2013), No. 8, art. No. 084108.
|
[25] |
J.W. Liu, M.Y. Liao, M. Imura, E. Watanabe, H. Oosato, and Y. Koide, Diamond field effect transistors with a high-dielectric constant Ta2O5 as gate material, J. Phys. D, 47(2014), No. 24, art. No. 245102.
|
[26] |
J. Liu, M. Liao, M. Imura, A. Tanaka, H. Iwai, and Y. Koide, Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric, Sci. Rep., 4(2014), art. No. 6395.
|
[27] |
J.W. Liu, H. Oosato, M.Y. Liao, and Y. Koide, Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator, Appl. Phys. Lett., 110(2017), No. 20, art. No. 203502.
|
[28] |
J.W. Liu, M.Y. Liao, M. Imura, R.G. Banal, and Y. Koide, Deposition of TiO2/Al2O3 bilayer on hydrogenated diamond for electronic devices: Capacitors, field-effect transistors, and logic inverters, J. Appl. Phys., 121(2017), No. 22, art. No. 224502.
|
[29] |
J.W. Liu, M.Y. Liao, M. Imura, and Y. Koide, High-k ZrO2/Al2O3 bilayer on hydrogenated diamond: Band configuration, breakdown field, and electrical properties of field-effect transistors, J. Appl. Phys., 120(2016), No. 12, art. No. 124504.
|
[30] |
J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, and Y. Koide, Electrical properties of atomic layer deposited HfO2/Al2O3 multilayer on diamond, Diamond Relat. Mater., 54(2015), p. 55.
|
[31] |
R.G. Banal, M. Imura, J.W. Liu, and Y. Koide, Structural properties and transfer characteristics of sputter deposition AlN and atomic layer deposition Al2O3 bilayer gate materials for H-terminated diamond field effect transistors, J. Appl. Phys., 120(2016), No. 11, art. No. 115307.
|
[32] |
J.W. Liu, M.Y. Liao, M. Imura, T. Matsumoto, N. Shibata, Y. Ikuhara, and Y. Koide, Control of normally on/off characteristics in hydrogenated diamond metal-insulator-semiconductor field-effect transistors, J. Appl. Phys., 118(2015), No. 11, art. No. 115704.
|
[33] |
S. Russell, S. Sharabi, A. Tallaire, and D.A.J. Moran, RF operation of hydrogen-terminated diamond field effect transistors: a comparative study, IEEE Trans. Electron Devices, 62(2015), No. 3, p. 751.
|
[34] |
J.W. Liu, H. Ohsato, M.Y. Liao, M. Imura, E. Watanabe, and Y. Koide, Logic circuits with hydrogenated diamond field-effect transistors, IEEE Electron Devices Lett., 38(2017), No. 7, p. 922.
|
[35] |
M.Y. Liao, J.W. Liu, L.W. Sang, D. Coathup, J.L. Li, M. Imura, Y. Koide, and H.T. Ye, Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures, Appl. Phys. Lett., 106(2015), No. 8, art. No. 083506.
|
[36] |
H.Y. Wong, N. Braga, and R.V. Mickevicius, Prediction of highly scaled hydrogen-terminated diamond MISFET performance based on calibrated TCAD simulation, Diamond Relat. Mater., 80(2017), p. 14.
|
[37] |
H.Y. Wong, N. Braga, and R.V. Mickevicius, A physical model of the abnormal behavior of hydrogen-terminated Diamond MESFET,[in] 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kamakura, 2017, p. 333.
|
[38] |
Y. Fu, R.M. Xu, Y.H. Xu, J.J. Zhou, Q.Z. Wu, Y.C. Kong, Y. Zhang, T.S. Chen, and B. Yan, Characterization and modeling of hydrogen-terminated MOSFETs with single-crystal and polycrystalline diamond, IEEE Electron Devices Lett., 39(2018), No. 11, p. 1704.
|
[39] |
Y. Fu, Y.H. Xu, R.M. Xu, J.J. Zhou, and Y.C. Kong, Physical-based simulation of DC characteristics of hydrogen-terminated diamond MOSFETs,[in] 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Haining, 2017, p. 1.
|
[40] |
K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D.J. Twitchen, G.A. Scarsbrook, and S.E. Coe, Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz, IEEE Electron Devices Lett., 27(2006), No. 7, p. 570.
|
[41] |
J.J. Wang, Z.Z. He, C. Yu, X.B. Song, P. Xu, P.W. Zhang, H. Guo, J.L. Liu, C.M. Li, S.J. Cai, and Z.H. Feng, Rapid deposition of polycrystalline diamond film by DC arc plasma jet technique and its RF MESFETs, Diamond Relat. Mater., 43(2014), p. 43.
|
[42] |
T.T. Pham, A. Maréchal, P. Muret, D. Eon, E. Gheeraert, N. Rouger, and J. Pernot, Comprehensive electrical analysis of metal/Al2O3/O-terminated diamond capacitance, J. Appl. Phys., 123(2018), No. 16, art. No. 161523.
|
[43] |
T.T. Pham, J. Pernot, G. Perez, D. Eon, E. Gheeraert, and N. Rouger, Deep-depletion mode boron-doped monocrystalline diamond metal oxide semiconductor field effect transistor, IEEE Electron Devices Lett., 38(2017), No. 11, p. 1571.
|
[44] |
T.T. Pham, N. Rouger, C. Masante, G. Chicot, F. Udrea, D. Eon, E. Gheeraert, and J. Pernot, Deep depletion concept for diamond MOSFET, Appl. Phys. Lett., 111(2017), No. 17, art. No. 173503.
|
[45] |
T. Matsumoto, H. Kato, K. Oyama, T. Makino, M. Ogura, D. Takeuchi, T. Inokuma, N. Tokuda, and S. Yamasaki, Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics, Sci. Rep., 6(2016), art. No. 31585.
|
[46] |
T. Matsumoto, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, M. Imura, A. Ueda, T. Inokuma, and N. Tokuda, Direct observation of inversion capacitance in p-type diamond MOS capacitors with an electron injection layer, Jpn. J. Appl. Phys., 57(2018), No. 4S, art. No. 04FR01.
|
[47] |
A. Maréchal, M. Aoukar, C. Vallée, C. Rivière, D. Eon, J. Pernot, and E. Gheeraert, Energy-band diagram configuration of Al2O3/oxygen-terminated p-diamond metal-oxide-semiconductor, Appl. Phys. Lett., 107(2015), No. 14, art. No. 141601.
|
[48] |
J.W. Liu, M.Y. Liao, M. Imura, and Y. Koide, Band offsets of Al2O3 and HfO2 oxides deposited by atomic layer deposition technique on hydrogenated diamond, Appl. Phys. Lett., 101(2012), No. 25, art. No. 252108.
|
[49] |
T.T. Pham, M. Gutiérrez, C. Masante, N. Rouger, D. Eon, E. Gheeraert, D. Araùjo, and J. Pernot, High quality Al2O3/(100) oxygen-terminated diamond interface for MOSFETs fabrication, Appl. Phys. Lett., 112(2018), No. 10, art. No. 102103.
|
[50] |
A. Tallaire, J. Achard, F. Silva, O. Brinza, and A. Gicquel, Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges, C. R. Phys., 14(2013), No. 2-3, p. 169.
|
[51] |
H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, A 2-in. mosaic wafer made of a single-crystal diamond, Appl. Phys. Lett., 104(2014), No. 10, art. No. 102110.
|
[52] |
M. Schreck, S. Gsell, R. Brescia, and M. Fischer, Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers, Sci. Rep., 7(2017), art. No. 44462.
|
[53] |
S. Koizumi, H. Umezawa, J. Pernot, amd M. Suzuki, Power Electronics Device Applications of Diamond Semiconductors, Woodhead Publishing, Cambridge, 2018, p. 383.
|
[54] |
S. Bohr, R. Haubner, and B. Lux, Influence of phosphorus addition on diamond CVD, Diamond Relat. Mater., 4(1995), No. 2, p. 133.
|
[55] |
S.N. Demlow, R. Rechenberg, and T. Grotjohn, The effect of substrate temperature and growth rate on the doping efficiency of single crystal boron doped diamond, Diamond Relat. Mater., 49(2014), p. 19.
|
[56] |
T. Matsumoto, H. Kato, N. Tokuda, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, and S. Yamasaki, Reduction of n-type diamond contact resistance by graphite electrode, Phys. Status Solidi RRL, 8(2014), No. 2, p. 137.
|
[57] |
S. Mi, A. Toros, T. Graziosi and N. Quack, Non-contact polishing of single crystal diamond by ion beam etching, Diamond Relat. Mater., 92(2019), p. 248.
|
[58] |
F.N. Li, J.W. Liu, J.W. Zhang, X.L. Wang, W. Wang, Z.C. Liu, and H.X. Wang, Measurement of barrier height of Pd on diamond (100) surface by X-ray photoelectron spectroscopy, Appl. Surf. Sci., 370(2016), p. 496.
|
[59] |
F. Li, J. Zhang, X. Wang, Z. Liu, W. Wang, S. Li, and H.X. Wang, X-ray photoelectron spectroscopy study of Schottky junctions based on oxygen-/fluorine-terminated (100) diamond, Diamond Relat. Mater., 63(2016), p. 180.
|
[60] |
J. Wang, G. Wang, D. Wang, S. Li, and P. Zeng, A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam, Sci. Rep., 8(2018), No. 1, art. No. 6978.
|