Cite this article as: |
Min-min Sun, Jian-liang Zhang, Ke-jiang Li, Ke Guo, Zi-ming Wang, and Chun-he Jiang, Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp. 1247-1257. https://doi.org/10.1007/s12613-019-1846-1 |
Ke-jiang Li E-mail: likejiang@ustb.edu.cn
[1] |
K.J. Li, J.L. Zhang, Y.P. Zhang, Z.J. Liu, and X. Jiang, Critical analyses about the development of iron-making process based on the principle of energy-saving and emission reduction, Chin. J. Proc. Eng., 14(2014), No. 1, p. 162.
|
[2] |
M.M. Sun, X.J. Ning, J.L. Zhang, K.J. Li, G.W. Wang, and H.Y. Wang, Research status and progress of energy saving and emission reduction technology for ironmaking, Chin. Metall., 28(2018), No. 3, p. 1.
|
[3] |
A.K. Biswas, Principles of Blast Furnace Ironmaking: Theory and Practice, Cootha Publishing House, Brisbane, 1981, p. 46.
|
[4] |
K.J. Li, Structural Evolution Behavior and Muti-phase Reaction Mechanism of Coke in Blast Furnace[Dissertation], University of Science and Technology Beijing, Beijing, 2017, p. 5.
|
[5] |
M. Grigore, R. Sakurovs, D. French, and V. Sahajwalla, Properties and CO2 reactivity of the inert and reactive maceral-derived components in cokes, Int. J. Coal Geol., 98(2012), p. 1.
|
[6] |
S. Pusz, M. Krzesińska, L. Smędowski, J. Majewska, B. Pilawa, and B. Kwiecińska, Changes in coke structure due to reaction with carbon dioxide, Int. J. Coal Geol., 81(2010), No. 4, p. 287.
|
[7] |
M. Grigore, R. Sakurovs, D. French, and V. Sahajwalla, Influence of mineral matter on coke reactivity with carbon dioxide, ISIJ Int., 46(2006), No. 4, p. 503.
|
[8] |
Z.Y. Chang, P. Wang, J.L. Zhang, K.X. Jiao, Y.Q. Zhang, and Z.J. Liu, Effect of CO2 and H2O on gasification dissolution and deep reaction of coke, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1402.
|
[9] |
S. Gupta, M. Dubikova, D. French, and V. Sahajwalla, Effect of CO2 gasification on the transformations of coke minerals at high temperatures, Energy Fuels, 21(2007), No. 2, p. 1052.
|
[10] |
W.T. Guo, Q.G. Xue, Y.L. Liu, Z.C. Guo, X.F. She, J.S. Wang, Q.Q. Zhao, and X.W. An, Kinetic analysis of gasification reaction of coke with CO2 or H2O, Int. J. Hydrogen Energy, 40(2015), No. 39, p. 13306.
|
[11] |
Z.S. Liu and Q. Wang, Non-isothermal kinetics of metallurgical coke gasification by carbon dioxide, Coke Chem., 60(2017), No. 4, p. 140.
|
[12] |
W. Wang, J. Wang, R.S. Xu, Y. Yu, Y. Jin, and Z.L. Xue, Influence mechanism of zinc on the solution loss reaction of coke used in blast furnace, Fuel Process. Technol., 159(2017), p. 118.
|
[13] |
L.W. Ren, J.L. Yang, F. Gao, and J.D. Yan, Laboratory study on gasification reactivity of coals and petcokes in CO2/steam at high temperatures, Energy Fuels, 27(2013), No. 9, p. 5054.
|
[14] |
J.H. Zou, Z.J. Zhou, F.C. Wang, W. Zhang, Z.H. Dai, H.F. Liu, and Z.H. Yu, Modeling reaction kinetics of petroleum coke gasification with CO2, Chem. Eng. Process., 46(2007), No. 7, p. 630.
|
[15] |
J.L. Zhang, J. Guo, G.W. Wang, T. Xu, Y.F. Chai, C.L. Zheng, and R.S. Xu, Kinetics of petroleum coke/biomass blends during co-gasification, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1001.
|
[16] |
F. Trejo, M.S. Rana, and J. Ancheyta, Thermogravimetric determination of coke from asphaltenes, resins and sediments and coking kinetics of heavy crude asphaltenes, Catal. Today, 150(2010), No. 3-4, p. 272.
|
[17] |
M. Malekshahian and J.M. Hill, Kinetic analysis of CO2 gasification of petroleum coke at high pressures, Energy Fuels, 25(2011), No. 9, p. 4043.
|
[18] |
W. Huo, Z.J. Zhou, X.L. Chen, Z.H. Dai, and G.S. Yu, Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars, Bioresour. Technol., 159(2014), p. 143.
|
[19] |
S.M. Shin and S.M. Jung, Gasification effect of metallurgical coke with CO2 and H2O on the porosity and macrostrength in the temperature range of 1100 to 1500℃, Energy Fuels, 29(2015), No. 10, p. 6849.
|
[20] |
J.W. Kook, I.S. Gwak, Y.R. Gwak, M.W. Seo, and S.H. Lee, A reaction kinetic study of CO2 gasification of petroleum coke, coals and mixture, Korean J. Chem. Eng., 34(2017), No. 12, p. 3092.
|
[21] |
Y.M. Zhang, M.Q. Yao, S.Q. Gao, G.G. Sun, and G.W. Xu, Reactivity and kinetics for steam gasification of petroleum coke blended with black liquor in a micro fluidized bed, Appl. Energy, 160(2015), p. 820.
|
[22] |
H.B. Zuo, W.W. Geng, J.L. Zhang, and G.W. Wang, Comparison of kinetic models for isothermal CO2 gasification of coal char–biomass char blended char, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 363.
|
[23] |
K. Jayaraman, I. Gökalp, and S. Jeyakumar, Estimation of synergetic effects of CO2 in high ash coal-char steam gasification, Appl. Therm. Eng., 110(2017), p. 991.
|
[24] |
S.C. Hu, X.Q. Ma, Y.S. Lin, Z.S. Yu, and S.W. Fang, Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste, Energy Convers. Manage., 99(2015), p. 112.
|
[25] |
Z.S. Yu, X.Q. Ma, and A. Liu, Thermogravimetric analysis of rice and wheat straw catalytic combustion in air- and oxygen-enriched atmospheres, Energy Convers. Manage., 50(2009), No. 3, p. 561.
|
[26] |
W.S. Carvalho, T.J. Oliveira, C.R. Cardoso, and C.H. Ataíde, Thermogravimetric analysis and analytical pyrolysis of a variety of lignocellulosic sorghum, Chem. Eng. Res. Des., 95(2015), p. 337.
|
[27] |
G.W. Wang, J.L. Zhang, J.G. Shao, and S. Ren, Characterisation and model fitting kinetic analysis of coal/biomass co-combustion, Thermochim. Acta, 591(2014), p. 68.
|
[28] |
Y.S. Shen, B.Y. Guo, C. Sheng P. Austin, and A.B. Yu, Three-Dimensional modeling of flow and thermochemical behavior in a blast furnace, Metall. Mater. Trans. B, 46(2015), No. 1, p. 432.
|
[29] |
P. Zhou, H.L. Li, P.Y. Shi, and C.Q. Zhou, Simulation of the transfer process in the blast furnace shaft with layered burden, Appl. Therm. Eng., 95(2016), p. 296.
|
[30] |
Q.F. Hou, E. Dianyu, S.B. Kuang, Z.Y. Li, and A.B. Yu, DEM-based virtual experimental blast furnace: A quasi-steady state model, Powder Technol., 314(2017), p. 557.
|
[31] |
A.S. Jayasekara, B.J. Monaghan, and R.J. Longbottom, The kinetics of reaction of a coke analogue in CO2 gas, Fuel, 154(2015), p. 45.
|
[32] |
E.E. Peterson, Reaction of porous solids, AIChE J., 3(1957), No. 4, p. 443.
|
[33] |
S.K. Bhatia and D.D. Perlmutter, A random pore model for fluid-solid reactions: I. Isothermal, kinetic control, AIChE J., 26(2010), No. 3, p. 379.
|
[34] |
E.M.A. Edreis, G.Q. Luo, A.J. Li, C.F. Xu, and H. Yao, Synergistic effects and kinetics thermal behaviour of petroleum coke/biomass blends during H2O co-gasification, Energy Convers. Manage., 79(2014), p. 355.
|