Bao Liu, Shuo Wang, Cheng-yan Wang, Bao-zhong Ma, and Yong-qiang Chen, Electrochemical behavior and corrosion resistance of IrO2–ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 264-273. https://doi.org/10.1007/s12613-019-1847-0
Cite this article as:
Bao Liu, Shuo Wang, Cheng-yan Wang, Bao-zhong Ma, and Yong-qiang Chen, Electrochemical behavior and corrosion resistance of IrO2–ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 264-273. https://doi.org/10.1007/s12613-019-1847-0
Research Article

Electrochemical behavior and corrosion resistance of IrO2–ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution

+ Author Affiliations
  • Corresponding authors:

    Cheng-yan Wang    E-mail: chywang@yeah.net

    Bao-zhong Ma    E-mail: bzhma@126.com

  • Received: 7 March 2019Revised: 14 April 2019Accepted: 19 April 2019Available online: 28 November 2019
  • In this study, we prepared Ti/IrO2–ZrO2 electrodes with different ZrO2 contents using zirconium-n-butoxide (C16H36O4Zr) and chloroiridic acid (H2IrCl6) via a sol–gel route. To explore the effect of ZrO2 content on the surface properties and electrochemical behavior of electrodes, we performed physical characterizations and electrochemical measurements. The obtained results revealed that the binary oxide coating was composed of rutile IrO2, amorphous ZrO2, and an IrO2–ZrO2 solid solution. The IrO2–ZrO2 binary oxide coatings exhibited cracked structures with flat regions. A slight incorporation of ZrO2 promoted the crystallization of the active component IrO2. However, the crystallization of IrO2 was hindered when the added ZrO2 content was greater than 30at%. The appropriate incorporation of ZrO2 enhanced the electrocatalytic performance of the pure IrO2 coating. The Ti/70at%IrO2–30at%ZrO2 electrode, with its large active surface area, improved electrocatalytic activity, long service lifetime, and especially, lower cost, is the most effective for promoting oxygen evolution in sulfuric acid solution.

  • loading
  • [1]
    D. Devilliers and E. Mahé, Modified titanium electrodes: Application to Ti/TiO2/PbO2 dimensionally stable anodes, Electrochim. Acta, 55(2010), No. 27, p. 8207. doi: 10.1016/j.electacta.2010.01.098
    [2]
    Y. Zhao, Y.F. E, L.Z. Fan, Y.F. Qiu, and S.H. Yang, A new route for the electrodeposition of platinum–nickel alloy nanoparticles on multi-walled carbon nanotubes, Electrochim. Acta, 52(2007), No. 19, p. 5873. doi: 10.1016/j.electacta.2007.03.020
    [3]
    J. L. Lu, S.F. Lu, D.L. Wang, M. Yang, Z.L. Liu, C.W. Xu, and S.P. Jiang, Nano-structured PdxPt1−x/Ti anodes prepared by electrodeposition for alcohol electrooxidation, Electrochim. Acta, 54(2009), No. 23, p. 5486. doi: 10.1016/j.electacta.2009.04.048
    [4]
    E. Fabbri, A. Habereder, K. Waltar, R. Kötz, and T.J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, Catal. Sci. Technol., 4(2014), No. 11, p. 3800. doi: 10.1039/C4CY00669K
    [5]
    S. Siracusano, V. Baglio, A. Di Blasi, N. Briguglio, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci, and A.S. Aricò, Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst, Int. J. Hydrogen Energy, 35(2010), No. 11, p. 5558. doi: 10.1016/j.ijhydene.2010.03.102
    [6]
    J. Shu, Z.L. Qiu, S.Z. Lv, K.Y. Zhang, and D.P. Tang, Plasmonic enhancement coupling with defect-engineered TiO2−x: A mode for sensitive photoelectrochemical biosensing, Anal. Chem., 90(2018), No. 4, p. 2425. doi: 10.1021/acs.analchem.7b05296
    [7]
    G.N. Cai, Z.Z. Yu, R.R. Ren, and D.P. Tang, Exciton-plasmon interaction between AuNPs/graphene nanohybrids and CdS quantum dots/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen, ACS Sens., 3(2018), No. 3, p. 632. doi: 10.1021/acssensors.7b00899
    [8]
    Z.L. Qiu, J. Shu, and D.P. Tang, Near-infrared-to ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core–shell NaYF4:Yb, Tm@TiO2 upconversion microrods, Anal. Chem., 90(2018), No. 1, p. 1021. doi: 10.1021/acs.analchem.7b04479
    [9]
    J. Tang, D.P. Tang, R. Niessner, and D. Knopp, A novel strategy for ultra-sensitive electrochemical immunoassay of biomarkers by coupling multifunctional iridium oxide (IrOx) nanospheres with catalytic recycling of self-produced reactants, Anal. Bioanal. Chem., 400(2011), No. 7, p. 2041. doi: 10.1007/s00216-011-4936-0
    [10]
    X.M. Chen and G.H. Chen, Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution, Electrochim. Acta, 50(2005), No. 20, p. 4155. doi: 10.1016/j.electacta.2005.01.032
    [11]
    F. Moradi and C. Dehghanian, Addition of IrO2 to RuO2 + TiO2 coated anodes and its effect on electrochemical performance of anodes in acid media, Prog. Nat. Sci:Mater. Int., 24(2014), No. 2, p. 134. doi: 10.1016/j.pnsc.2014.03.008
    [12]
    L.M. Gajić-Krstajić, T.L. Trišović, and N.V. Krstajić, Spectrophotometric study of the anodic corrosion of Ti/RuO2 electrode in acid sulfate solution, Corros. Sci., 46(2004), No. 1, p. 65. doi: 10.1016/S0010-938X(03)00111-2
    [13]
    R. Shan, Z.C. Zhang, M. Kan, T.Y. Zhang, Q. Zan, and Y.X. Zhao, A novel highly active nanostructured IrO2/Ti anode for water oxidation, Int. J. Hydrogen Energy, 40(2015), No. 41, p. 14279. doi: 10.1016/j.ijhydene.2015.04.071
    [14]
    C.E. Vallet, B.V. Tilak, R.A. Zuhr, and C.P. Chen, Rutherford backscattering spectroscopic study of the failure mechanism of (RuO2 + TiO2)/Ti thin film electrodes in H2SO4 solutions, J. Electrochem. Soc., 144(1997), No. 4, p. 1289. doi: 10.1149/1.1837586
    [15]
    B.S. Li, A. Lin, and F.X. Gan, Preparation and characterization of Ti/IrO2–Ta2O5 anodes for oxygen evolution used to sulfate electrolysis, Rare Met. Mater. Eng., 36(2007), No. 2, p. 245.
    [16]
    J. J. Zhang, J. M. Hu, J. Q. Zhang, and C.N. Cao, IrO2–SiO2 binary oxide films: Geometric or kinetic interpretation of the improved electrocatalytic activity for the oxygen evolution reaction, Int. J. Hydrogen Energy, 36(2011), No. 9, p. 5218. doi: 10.1016/j.ijhydene.2011.01.131
    [17]
    C. Iwakura and K. Sakamoto, Effect of active layer composition on the service life of (SnO2 and RuO2)-coated Ti electrodes in sulfuric acid solution, J. Electrochem. Soc., 132(1985), No. 10, p. 2420. doi: 10.1149/1.2113590
    [18]
    G.C. Pathiraja, N. Nanayakkara, and A. Wijayasinghe, Oxygen evolution reaction of Ti/IrO2–SnO2 electrodes: a study by cyclic voltammetry, Bull. Mater. Sci., 39(2016), No. 3, p. 803. doi: 10.1007/s12034-016-1190-2
    [19]
    H.A. Mazhari, K. Jafarzadeh, and S.M. Mirali, An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2–Ta2O5 coating in an OER application, J. Electroanal. Chem., 777(2016), p. 67. doi: 10.1016/j.jelechem.2016.07.036
    [20]
    G.P. Vercesi, J. Y. Salamin, and C. Comninellis, Morphological and microstructural the Ti/IrO2–Ta2O5 electrode: effect of the preparation temperature, Electrochim. Acta, 36(1991), No. 5-6, p. 991. doi: 10.1016/0013-4686(91)85306-R
    [21]
    R.E. Palma-Goyes, J. Vazquez-Arenas, C. Ostos, R.A. Torres-Palma, and I. González, The effects of ZrO2 on the electrocatalysis to yield active chlorine species on Sb2O5-doped Ti/RuO2 anodes, J. Electrochem. Soc, 163(2016), No. 9, p. H818. doi: 10.1149/2.0891609jes
    [22]
    L.D. Burke and M. McCarthy, Oxygen gas evolution at, and deterioration of, RuO2/ZrO2-coated titanium anodes at elevated temperature in strong base, Electrochim. Acta, 29(1984), No. 2, p. 211. doi: 10.1016/0013-4686(84)87049-8
    [23]
    J. B. Wang, W.P. Zhu, X.W. He, and S.X. Yang, Catalytic wet air oxidation of acetic acid over different ruthenium catalysts, Catal. Commun., 9(2008), No. 13, p. 2163. doi: 10.1016/j.catcom.2008.04.019
    [24]
    Y.Q. Shao, Z.Y. Yi, C. He, J. Q. Zhu, and D. Tang, Effects of annealing temperature on the structure and capacitive performance of nanoscale Ti/IrO2–ZrO2 electrodes, J. Am. Ceram. Soc., 98(2015), No. 5, p. 1485. doi: 10.1111/jace.13475
    [25]
    C.H. Comninellis and G.P. Vercesi, Characterization of DSA®-type oxygen evolving electrodes: choice of a coating, J. Appl. Electrochem., 21(1991), No. 4, p. 335. doi: 10.1007/BF01020219
    [26]
    A.J. Terezo and E.C. Pereira, Preparation and characterisation of Ti/RuO2 anodes obtained by sol-gel and conventional routes, Mater. Lett., 53(2002), No. 4-5, p. 339. doi: 10.1016/S0167-577X(01)00504-3
    [27]
    B. Liu, C.Y. Wang, Y.Q. Chen, B.Z. Ma, and J. L. Zhang, Effects of calcination temperature on the surface morphology and electrocatalytic properties of Ti/IrO2–ZrO2 anodes in an oxygen evolution application, J. Electrochem. Soc., 165(2018), No. 14, p. F1192. doi: 10.1149/2.0701814jes
    [28]
    G.R.P. Malpass and A.J. Motheo, Cyclic voltammetric behavior of dimensionally stable anodes in the presence of C1-C3 aldehydes, J. Braz. Chem. Soc., 14(2003), No. 4, p. 645. doi: 10.1590/S0103-50532003000400023
    [29]
    W.H. Lee and H. Kim, Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions, Catal. Commum., 12(2011), No. 6, p. 408. doi: 10.1016/j.catcom.2010.11.003
    [30]
    W. Xu, G.M. Haarberg, S. Sunde, F. Seland, A.P. Ratvik, E. Zimmerman, T. Shimamune, J. Gustavsson, and T. Akre, Calcination temperature dependent catalytic activity and stability of IrO2–Ta2O5 anodes for oxygen evolution reaction in aqueous sulfate electrolytes, J. Electrochem. Soc, 164(2017), No. 9, p. F895. doi: 10.1149/2.0061710jes
    [31]
    L.K. Wu, X.Y. Liu, and J.M. Hu, Electrodeposited SiO2 film: a promising interlayer of a highly active Ti electrode for the oxygen evolution reaction, J. Mater. Chem. A, 4(2016), No. 30, p. 11949. doi: 10.1039/C6TA03931F
    [32]
    L.A. Da Silva, V.A. Alves, M.A.P. Da Silva, S. Trasatti, and J.F.C. Boodts, Morphological chemical and electrochemical properties of Ti/(TiO2–IrO2) electrodes, Can. J. Chem., 75(1997), No. 11, p. 1483. doi: 10.1139/v97-178
    [33]
    V. Pfeifer, T.E. Jones, J.J. Velasco Vélez, C. Massué, M.T. Greiner, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer. J. Allan, M. Hashagen, G. Weinberg, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, The electronic structure of iridium oxide electrodes active in water splitting, Phys. Chem. Chem. Phys., 18(2016), p. 2292. doi: 10.1039/C5CP06997A
    [34]
    R.D. Xu, L.P. Huang, J.F. Zhou, P. Zhan, Y.Y. Guan, and Y. Kong, Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb–PANI–WC composite inert anodes used in zinc electrowinning, Hydrometallurgy, 125-126(2012), p. 8. doi: 10.1016/j.hydromet.2012.04.012
    [35]
    T. Audichon, S. Morisset, T.W. Napporn, K.B. Kokoh, C. Comminges, and C. Morals, Effect of adding CeO2 to RuO2–IrO2 mixed nanocatalysts: activity towards the oxygen evolution reaction and stability in acidic media, ChemElectroChem, 2(2015), No. 8, p. 1128. doi: 10.1002/celc.201500072
    [36]
    E. Rasten, G. Hagen, and R. Tunold, Electrocatalysts in water electrolysis with solid polymer electrolyte, Electrochim. Acta, 48(2003), No. 25-26, p. 3945. doi: 10.1016/j.electacta.2003.04.001
    [37]
    M.H.P. Santana, L.A. De Faria, and J.F.C. Boodts, Effect of preparation procedure of IrO2–Nb2O5 anodes on surface and electrocatalytic properties, J. Appl. Electrochem., 35(2005), No. 9, p. 915. doi: 10.1007/s10800-005-4720-y
    [38]
    L.M. Da Silva, L.A. De Faria, and J.F.C. Boodts, Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency, Electrochim. Acta, 48(2003), No. 6, p. 699. doi: 10.1016/S0013-4686(02)00739-9
    [39]
    T.A.F. Lassali, J.F.C. Boodts, and L.O.S. Bulhoes, Charging processes and electrocatalytic properties of IrO2/TiO2/SnO2 oxide films investigated byin situ AC impedance measurements, Electrochim. Acta, 44(1999), No. 24, p. 4203. doi: 10.1016/S0013-4686(99)00135-8
    [40]
    J. M. Hu, H.M. Meng, J.Q. Zhang, and C.N. Cao, Degradation mechanism of long service life Ti/IrO2–Ta2O5 oxide anodes in sulphuric acid, Corros. Sci., 44(2002), No. 8, p. 1655. doi: 10.1016/S0010-938X(01)00165-2
    [41]
    Y.Y. Hou, J.M. Hu, L. Liu, J.Q. Zhang, and C.N. Cao, Effects of calcination temperature on electrocatalytic activities of Ti/IrO2 electrodes in methanol aqueous solutions, Electrochim. Acta, 51(2006), No. 28, p. 6258. doi: 10.1016/j.electacta.2006.04.008
    [42]
    S. Palmas, A.M. Polcaro, F. Ferrara, J.R. Ruiz, F. Delogu, C. Bonatto-Minella, and G. Mulas, Electrochemical performance of mechanically treated SnO2 powers for OER in acid solution, J. Appl. Electrochem., 38(2008), No. 7, p. 907. doi: 10.1007/s10800-008-9494-6
    [43]
    B. Piela and P.K. Wrona, Capacitance of the gold electrode in 0.5 M H2SO4 solution: a.c. impedance studies, J. Appl. Electroanal. Chem., 388(1995), No. 1-2, p. 69. doi: 10.1016/0022-0728(94)03848-W
    [44]
    H.T. Yang, H.R. Liu, Z.C. Guo, B.M. Chen, Y.C. Zhang, H. Huang, X.L. Li, R.C. Fu, and R.D. Xu, Electrochemical behavior of rolled Pb–0.8%Ag anodes, Hydrometallurgy, 140(2013), p. 144. doi: 10.1016/j.hydromet.2013.10.003
    [45]
    V.A. Alves, L.A. da Silva, and J.F.C. Boodts, Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkaline solution, Electrochim. Acta, 44(1998), No. 8-9, p. 1525. doi: 10.1016/S0013-4686(98)00276-X
    [46]
    Z.G. Ye, H.M. Meng, and D.B. Sun, New degradation mechanism of Ti/IrO2–MnO2 anode for oxygen evolution in 0.5 M H2SO4 solution, Electrochim. Acta, 53(2008), No. 18, p. 5639. doi: 10.1016/j.electacta.2008.03.025
    [47]
    G.N. Martelli, R. Ornelas, and G. Faita, Deactivation mechanisms of oxygen evolving anodes at high current densities, Electrochim. Acta, 39(1994), No. 11-12, p. 1551. doi: 10.1016/0013-4686(94)85134-4
    [48]
    R. Kötz, H. Neff, and S. Stucki, Anodic iridium oxide films: XPS-studies of oxidation state changes and O2-evolution, J. Electrochem. Soc., 131(1984), No. 1, p. 72. doi: 10.1149/1.2115548
    [49]
    Y. Song, G. Wei, and R. Xiong, Structure and properties of PbO2−CeO2 anodes on stainless steel, Electrochim. Acta, 52(2007), No. 24, p. 7022. doi: 10.1016/j.electacta.2007.05.024
    [50]
    H.T. Yang, B.M. Chen, H.R. Liu, Z.C. Guo, Y.C. Zhang, X.L. Li, and R.D. Xu, Effects of manganese nitrate concentration on the performance of an aluminum substrate β-PbO2–MnO2–WC–ZrO2 composite electrode material, Int. J. Hydrogen Energy, 39(2014), No. 7, p. 3087. doi: 10.1016/j.ijhydene.2013.12.091
    [51]
    W. Zhang, E. Ghali, and G. Houlachi, Review of oxide coated catalytic titanium anodes performance for metal electrowinning, Hydrometallurgy, 169(2017), p. 456. doi: 10.1016/j.hydromet.2017.02.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1814) PDF Downloads(75) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return