Di Wu, Wan-lin Wang, Li-gang Zhang, Zhen-yu Wang, Ke-chao Zhou,  and Li-bin Liu, New high-strength Ti-Al-V-Mo alloy: from high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1151-1165. https://doi.org/10.1007/s12613-019-1854-1
Cite this article as:
Di Wu, Wan-lin Wang, Li-gang Zhang, Zhen-yu Wang, Ke-chao Zhou,  and Li-bin Liu, New high-strength Ti-Al-V-Mo alloy: from high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1151-1165. https://doi.org/10.1007/s12613-019-1854-1
Research Article

New high-strength Ti-Al-V-Mo alloy: from high-throughput composition design to mechanical properties

+ Author Affiliations
  • Corresponding authors:

    Ke-chao Zhou    E-mail: zhoukechao@csu.edu.cn

    Li-bin Liu    E-mail: lbliu@csu.edu.cn

  • Received: 13 January 2019Revised: 22 February 2019Accepted: 27 February 2019
  • The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition-microstructure-property relationships of the Ti64-xMo alloys were obtained. The phase fraction and composition of the α and β phases of the Ti64-xMo alloys were calculated using the Thermo-Calc software. After aging at 600℃, the Ti64-6Mo alloy precipitated ultrafine α phases. This phenomenon was explained on the basis of the pseudo-spinodal mechanism by calculating the Gibbs energy curves of the α and β phases of the Ti64-xMo alloys at 600℃. Bulk forged Ti64-6Mo alloy exhibited high strength and moderate plasticity after α/β-phase-field solution treatment plus aging. The tensile properties of the alloy were determined by the size and morphology of the primary and secondary α phases and by the β grain size.
  • loading
  • [1]
    H.X. Li, X.Y. Nie, Z.B. He, K.N. Zhao, Q. Du, J.S. Zhang, and L.Z. Zhuang, Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method, Int. J. Miner. Metall. Mater., 24(2017), No. 12, p. 1412.
    [2]
    M.K. Ibrahim, E. Hamzah, S.N. Saud, E.N.E. Abu Bakar, and A. Bahador, Microwave sintering effects on the microstructure and mechanical properties of Ti-51at% Ni shape memory alloys, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 280.
    [3]
    R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A, 213(1996), No. 1-2, p. 103.
    [4]
    T.N. Prasanthi, C. Sudha, and S. Saroja, Effect of alloying elements on interdiffusion phenomena in explosive clads of 304LSS/Ti-5Ta-2Nb alloy, J. Mater. Sci., 51(2016), No. 11, p. 5290.
    [5]
    H.P. Duan, H.X. Xu, W.H. Su, Y.B. Ke, Z.Q. Liu, and H.H. Song, Effect of oxygen on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr alloy, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1128.
    [6]
    S.L. Semiatin, P.N. Fagin, M.G. Glavicic, I.M. Sukonnik, and O.M. Ivasishin, Influence on texture on beta grain growth during continuous annealing of Ti-6Al-4V, Mater. Sci. Eng. A, 299(2001), No. 1-2, p. 225.
    [7]
    Y.J. Lai, S.W. Xin, P.X. Zhang, Y.Q. Zhao, F.J. Ma, X.H. Liu, and Y. Feng, Recrystallization behavior of Ti40 burn-resistant titanium alloy during hot working process, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p 581.
    [8]
    T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, and Y.V.R.K. Prasad, Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti-6Al-4V, Mater. Sci. Eng. A, 279(2000), No. 1-2, p. 289.
    [9]
    A. Nocivin, I. Cinca, D. Raducanu, V.D. Cojocaru, and I.A. Popovici, Mechanical properties of a Gum-type Ti-Nb-Zr-Fe-O alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 909.
    [10]
    S. Raghunathan, R.J. Dashwood, M. Jackson, S.C. Vogel, and D. Dye, The evolution of microtexture and macrotexture during subtransus forging of Ti-10V-2Fe-3Al, Mater. Sci. Eng. A, 488(2008), No. 1-2, p. 8.
    [11]
    G.T. Terlinde, T.W. Duerig, and J.C. Williams, Microstructure, tensile deformation, and fracture in aged ti 10V-2Fe-3Al, Metall. Trans. A, 14(1983), No. 10, p. 2101.
    [12]
    B. He, X.J. Tian, X. Cheng, J. Li, and H.M. Wang, Effect of weld repair on microstructure and mechanical properties of laser additive manufactured Ti-55511 alloy, Mater. Des., 119(2017), p. 437.
    [13]
    S. Nag, R. Banerjee, J.Y. Hwang, M. Harper, and H.L. Fraser, Elemental partitioning between α and β phases in the Ti-5Al-5Mo-5V-3Cr-0.5Fe (Ti-5553) alloy, Philos. Mag., 89(2009), No. 6, p. 535.
    [14]
    F.W. Chen, G.L. Xu, X.Y. Zhang, K.C. Zhou, and Y.W. Cui, Effect of α morphology on the diffusional β↔α transformation in Ti-55531 during continuous heating:Dissection by dilatometer test, microstructure observation and calculation, J. Alloys Compd., 702(2017), No. 25, p. 352.
    [15]
    J.K. Fan, J.S. Li, H.C. Kou, K. Hua, and B. Tang, The interrelationship of fracture toughness and microstructure in a new near β titanium alloy Ti-7Mo-3Nb-3Cr-3Al, Mater. Charact., 96(2014), p. 93.
    [16]
    B. Cherukuri, R. Srinivasan, S. Tamirisakandala, and D.B. Miracle, The influence of trace boron addition on grain growth kinetics of the beta phase in the beta titanium alloy Ti-15Mo-2.6Nb-3Al-0.2Si, Scripta Mater., 60(2009), No. 7, p. 496.
    [17]
    N.G. Jones, R.J. Dashwood, M. Jackson, and D. Dye, Development of chevron-shaped α precipitates in Ti-5Al-5Mo-5V-3Cr, Scripta Mater., 60(2009), No. 7, p. 571.
    [18]
    A. Dehghan-Manshadi and R.J. Dippenaar, Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti-5Al-5Mo-5V-3Cr alloy, Mater. Sci. Eng. A, 528(2011), No. 3, p 1833.
    [19]
    J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Characterization of hot deformation behavior of a new near beta titanium alloy:Ti-7333, Mater. Des., 49(2013), p. 945.
    [20]
    J.I. Qazi, H.J. Rack, and B. Marquardt, High-strength metastable beta-titanium alloys for biomedical applications, JOM, 56(2004), No. 11, p. 49.
    [21]
    R. Banerjee, S. Nag, J. Stechschulte, and H.L. Fraser, Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys, Biomaterials, 25(2004), No. 17, p. 3413.
    [22]
    T. Zhou, M. Aindow, S.P. Alpay, M.J. Blackburn, and M.H. Wu, Pseudo-elastic deformation behavior in a Ti/Mo-based alloy, Scripta Mater., 50(2004), No. 3, p. 343.
    [23]
    T. Oyama, C. Watanabe, and R. Monzen, Growth kinetics of ellipsoidal ω-precipitates in a Ti-20 wt%Mo alloy under compressive stress, J. Mater. Sci., 51(2016), No. 19, p. 8880.
    [24]
    C.H. Wang, C.D. Yang, M. Liu, X. Li, P.F. Hu, A.M. Russell, and G.H. Cao, Martensitic microstructures and mechanical properties of as-quenched metastable β-type Ti-Mo alloys, J. Mater. Sci., 51(2016), No. 14, p. 6886.
    [25]
    R. Monzen, R. Kawai, T. Oyama, and C. Watanabe, Tensile-stress-induced growth of ellipsoidal ω-precipitates in a Ti-20wt%Mo Alloy, J. Mater. Sci., 51(2016), No. 5, p. 2490.
    [26]
    J.C. Zhao, A combinatorial approach for efficient mapping of phase diagrams and properties, J. Mater. Res., 16(2001), No. 6, p. 1565.
    [27]
    J.C. Zhao, X. Zheng, and D.G. Cahill, High-throughput diffusion multiples, Mater. Today, 8(2005), No. 10, p. 28.
    [28]
    J.C. Zhao, X. Zheng, and D.G. Cahill, High-throughput measurements of materials properties, JOM, 63(2011), No. 3, p. 40.
    [29]
    X. Zheng, D.G. Cahill, P. Krasnochtchekov, R.S. Averback, and J.C. Zhao, High-throughput thermal conductivity measurements of nickel solid solutions and the applicability of the Wiedemann-Franz law, Acta Mater., 55(2007), No. 15, p. 5177.
    [30]
    X.D. Zhang, L.B. Liu, J.C. Zhao, J.L. Wang, F. Zheng, and Z.P. Jin, High-efficiency combinatorial approach as an effective tool for accelerating metallic biomaterials research and discovery, Mater. Sci. Eng. C, 39(2014), No. 1, p. 273.
    [31]
    D. Wu, L.B. Liu, L.G. Zhang, L.J. Zeng, and X. Shi, Investigation of the influence of Cr on the microstructure and properties of Ti6Al4VxCr alloys with a combinatorial approach, J. Mater. Eng. Perform., 26(2017), No. 9, p. 4364.
    [32]
    C. Wang, N. Li, Y. Cui, and M.T. Pérez-Prado, Effect of solutes on the rate sensitivity in Ti-xAl-yMo-zV and Ti-xAl-yMo-zCr β-Ti alloys, Scripta Mater., 149(2018), p. 129.
    [33]
    J.C. Williams and B.S. Hickman, Tempering behavior of orthorhombic martensite in titanium alloys, Metall. Mater. Trans. B, 1(1970), No. 9, p. 2648.
    [34]
    H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys, Acta Mater., 54(2006), No. 9, p. 2419.
    [35]
    W.F. Ho, S.C. Wu, S.K. Hsu, Y.C. Li, and H.C. Hsu, Effects of molybdenum content on the structure and mechanical properties of as-cast Ti-10Zr-based alloys for biomedical applications, Mater. Sci. Eng. C, 32(2012), No. 3, p. 517.
    [36]
    W.F. Ho, S.C. Wu, H.H. Chang, and H.C. Hsu, Structure and mechanical properties of Ti-5Cr based alloy with Mo addition, Mater. Sci. Eng. C, 30(2010), No. 6, p. 904.
    [37]
    Z. Du, S. Xiao, L. Xu, J. Tian, F. Kong, and Y. Chen, Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy, Mater. Des., 55(2014), No. 55, p. 183.
    [38]
    W.F. Ho, C.P. Ju, and J.H. Lin, Structure and properties of cast binary Ti-Mo alloys, Biomaterials, 20(1999), No. 22, p. 2115.
    [39]
    Y. Ni and A.G. Khachaturyan, From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition, Nat. Mater., 8(2009), No. 5, p. 410.
    [40]
    N.T.C. Oliveira and A.C. Guastaldi, Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications, Acta Biomater., 5(2009), No. 1, p. 399.
    [41]
    S.K. Kar, A. Ghosh, N. Fulzele, and A. Bhattacharjee, Quantitative microstructural characterization of a near beta Ti alloy, Ti-5553 under different processing conditions, Mater. Charact., 81(2013), No. 4, p. 37.
    [42]
    C.Y. Wang, L.W. Yang, Y.W. Cui, and M.T. Pérez-Prado, High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys, Mater. Des., 137(2017), p. 371.
    [43]
    L. Mora, C. Quesne, C. Haut, C. Servant, and R. Penelle, Relationships among thermomechanical treatments, microstructure, and tensile properties of a near beta-titanium alloy:β-CEZ:Part I. relationships between thermomechanical treatments and microstructure, J. Mater. Res., 11(1996), No. 1, p. 89.
    [44]
    G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, and G.V.S.N. Rao, Tensile and fracture toughness of high strength β titanium alloy, Ti-10V-2Fe-3Al, as a function of rolling and solution treatment temperatures, Mater. Des., 47(2013), p. 323.
    [45]
    J. Huang, Z. Wang, and K. Xue, Cyclic deformation response and micromechanisms of Ti alloy Ti-5Al-5V-5Mo-3Cr-0.5Fe, Mater. Sci. Eng. A, 528(2011), No. 29-30, p. 8723.
    [46]
    M. Jackson, N.G. Jones, D. Dye, and R.J. Dashwood, Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti-10V-2Fe-3Al, Mater. Sci. Eng. A, 501(2009), No. 1-2, p. 248.
    [47]
    D. Qin, Y. Lu, D. Guo, L. Zheng, Q. Liu, and L. Zhou, Tensile deformation and fracture of Ti-5Al-5V-5Mo-3Cr-1.5Zr-0.5Fe alloy at room temperature, Mater. Sci. Eng. A, 587(2013), p. 100.
    [48]
    W.F. Ho, S.C. Wu, S.K. Hsu, Y.C. Li, and H.C. Hsu, Effects of molybdenum content on the structure and mechanical properties of as-cast Ti-10Zr-based alloys for biomedical applications, Mater. Sci. Eng. C, 32(2012), No. 3, p. 517.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(673) PDF Downloads(27) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return