Evgeniy Nikolaevich Selivanov, Kirill Vladimirovich Pikulin, Lyudmila Ivanovna Galkova, Roza Iosifovna Gulyaeva, and Sofia Aleksandrovna Petrova, Kinetics and mechanism of natural wolframite interactions with sodium carbonate, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp.1364-1371. https://dx.doi.org/10.1007/s12613-019-1857-y
Cite this article as: Evgeniy Nikolaevich Selivanov, Kirill Vladimirovich Pikulin, Lyudmila Ivanovna Galkova, Roza Iosifovna Gulyaeva, and Sofia Aleksandrovna Petrova, Kinetics and mechanism of natural wolframite interactions with sodium carbonate, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp.1364-1371. https://dx.doi.org/10.1007/s12613-019-1857-y
Research Article

Kinetics and mechanism of natural wolframite interactions with sodium carbonate

Author Affilications
Funds: 

The work was carried out according to the state assign-ment for IMET UB RAS and Comprehensive Program for Basic Research of the Ural Branch of the Russian Academy of Sciences (No. AAAA-A18-118012590113-6) using equipment of Collaborative usage centre "Ural-M".

  • The kinetics and mechanism of natural wolframite interactions with sodium carbonate during air heating were studied. X-ray phase and X-ray microanalysis were used to establish that the initial monocrystalline wolframite consists of Fe0.5Mn0.5WO4 and Fe0.3Mn0.7WO4. Differential thermal analysis showed that the interaction of wolframite with sodium carbonate begins above 450℃ with the formation of tungstate, sodium ferrite, iron oxides, and manganese. Model experiments on sintering with the subsequent removal of water-soluble compounds (leaching) tracked the change in the structure of wolframite. The atomic ratio of Fe/Mn in wolframite does not change up to 600℃, and subsequently decreases to 0.2 during heating, which allows the mechanism of the process to be identified and indicates the greater reactivity of wolframites with an increased proportion of iron. Thermal analysis with data processing using non-isothermal kinetics established that the interaction of wolframite with sodium carbonate in an air stream proceeds via a two-stage mechanism, wherein the first stage is limited by diffusion (activation energy, E=243 kJ/mol) and the second stage is limited by autocatalysis (activation energy, E=212 kJ/mol) due to the formation of a Na2WO4-Na2CO3 eutectic.
  • E. Lassner and W.D. Schubert, Tungsten:Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, Springer, New York, 1999.
    J.R.L. Trassorass, T.A. Wolfe, W. Knabl, C. Venezia, R. Lemus, E. Lassner, W.D. Schubert, E. Lüderitz, and H. Wolf, Tungsten, Tungsten Alloys, and Tungsten Compounds, Wiley-VCH, Weinheim, 2016.
    W.Z. Yang, W. Wang, X.C. Wu, K.J. Yang, Q.K. Li, and J.L. He, Co-extraction of tungsten and molybdenum from refractory scheelite-powellite blend concentrates by roasting with Na2CO3 and SiO2 and leaching with water, Can. Metall. Q., 57(2018), No. 4, p. 447.
    V.L. Dimitrijević, M.D. Dimitrijević, and D. Milanović, Recovery of tungsten from low-grade scheelite concentrate by soda ash roast-leach method, J. Min. Metall. Sect. A, 40(2004), No. 1, p. 75.
    A.A. Palant, V.A. Bryukvin, and A.V. Tovtin, Extracting tungsten from wolframite-processing waste, Russ. Metall., 1999, No. 5, p. 23.
    B. Şirin, E. Açma, C. Arslan, and O. Addemir, The effect of sulphur on tungsten recovery from scheelite concentrates by alkali fusion, Can. Metall. Q., 33(1994), No. 4, p. 313.
    K. Srinivas, T. Sreenivas, R. Natarajan, and N.P.H. Padmanabhan, Studies on the recovery of tungsten from a composite wolframite-scheelite concentrate, Hydrometallurgy, 58(2000), No. 1, p. 43.
    J.F. Paulino, J.C. Afonso, J.L. Mantovano, C.A. Vianna, and J.W.S.D. da Cunha, Recovery of tungsten by liquid-liquid extraction from a wolframite concentrate after fusion with sodium hydroxide, Hydrometallurgy, 127(2012), p. 121.
    K.V. Pikulin, E.N. Selivanov, L.I. Galkova, and R.I. Gulyaeva, Features of tungsten extraction from spent catalysts of petroleum organic synthesis, Tsvetn. Met., 2017, No. 11, p. 31.
    V.L. Butuhanov and E.V. Hromtsova, Physical-Chemical Basics of Complex Application of Mineral Tungsten Ore, Pacific Ocean State University, Khabarovsk, 2015.
    G.I. Hanturgaeva, The combined technologies of complex processing of difficult-to-enrich molybdenum and tungstic ores, Min. Inf. Anal. Bull. Sci. Technol. J., 14(2009), No. 12, p. 478.
    B.S. Ayushieva and E.V. Zoltoev, Kinetic features of the sintering process for hubnerite concentrate with sodium sulfate, Min. Inf. Anal. Bull. Sci. Technol. J., 2012, No. 1, p. 125.
    G.K. Shurdumov, Z.A. Cherkesov, and L.I. Makaeva, Effect of mass transfer of systems Mn(Fe,Co)Mo(W)O4-Na2CO3 and environment and need for his account when identifying molybdates and tungstates of multivalent d-elements, Mn, Fe, Co, on basis of thermogravimetric data, Izv. Vyssh. Uchebn. Zaved. Khim. Khimich. Tekhnol., 62(2019), No. 2, p. 111.
    G.K. Shurdumov and Y.L. Kardanova, Chemical evolution MeSO4-Na2CO3-Mo(W)O4 type systems during heat treatment and the development of optimized solid phase synthesis method molybdates and tungstates d-elements family (Me-d-element),[in] Proceeding of the Kabardino-Balkarian State University, 6(2016), No. 2, p. 63.
    G.K. Shurdumov, Z.A. Cherkesov, and Z.O. Kerefov, Synthesis of sodium tungstate from the system Na2C2O4-NaNO3-WO3, Russ. J. Inorg. Chem., 52(2007), No. 5, p. 674.
    S.Q. Sun, Study on the chemical behavior of solid phase reaction of WO3 and Me2CO3 by the method of thermal analysis, Chem. Res. Chin. Univ., 6(1985), No. 2, p. 151.
    K.V. Pikulin, E.N. Selivanov, L.I. Galkova, and R.I. Gulyaeva, Specific features of the phase formation and process kinetic for wolframite concentrate sintering with sodium carbonate, Khimich. Tekhnol., 19(2018), No. 9, p. 413.
    J. Faber and T. Fawcett, The powder diffraction file:present and future, Acta Crystallogr. Sect. B:Struct. Sci, 58(2002), No. 3, p. 325.
    H.J. Flammersheim and J. Opfermann, Formal kinetic evaluation of reactions with partial diffusion control, Thermochim. Acta, 337(1999), No. 1-2, p. 141.
    E. García-Matres, N. Stüßer, M. Hofman, and M. Reehuis, Magnetic phases in Mn1-xFexWO4 studied by neutron powder diffraction, Eur. Phys. J. B, 32(2003), No. 1, p. 35.
    A. Sasaki, Variation of unit cell parameters in wolframite series, Mineral. J., 2(1959), No. 6, p. 375.
    V.I. Posypaiko, E.A. Alexeeva, and N.A. Vasina, Melting Diagrams of Salt Systems. P. 3, Metallurgiya, Moscow, 1979.
    N.I. Kopylov, Yu.D. Kaminskii, and A.V. Polugrudov, The NaNO3-Na2CO3-Na2WO4 system, Russ. J. Inorg. Chem., 43(1998), No. 12, p. 1952.
    S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520(2011), No. 1-2, p. 1.
    S. Vyazovkin, A unified approach to kinetic processing of non-isothermal data, Int. J. Chem. Kinet., 28(1996), No. 2, p. 95.
    S. Vyazovkin and C.A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and non-isothermal data, Thermochim. Acta, 340-341(1999), p. 53.
    G.K. Shurdumov, Z.V. Shurdumova, and Z.A. Cherkesov, Synthesis of potassium tungstate in the K2CO3-KNO3-WO3, Russ. J. Inorg. Chem., 54(2009), No. 1, p. 137.
    M.E. Brown, D. Dollimore, and A.K. Galwey, Reactions in the Solid State, Elsevier, Amsterdam, 1980.
  • Cited by

    Periodical cited type(5)

    1. Kirill V. Pikulin, Lyudmila I. Galkova, Galina Y. Vitkina, et al. Technological Aspects of Sintering Low-Quality Wolframite Concentrate with Potassium Carbonate. Applied Sciences, 2024, 14(19): 9000. DOI:10.3390/app14199000
    2. Bolotpay Baimbetov, Yeleussiz Tazhiyev, Akmaral Yeleuliyeva, et al. Sintering with Sodium Carbonate and Leaching of Wolframite Cakes. Applied Sciences, 2024, 14(24): 12031. DOI:10.3390/app142412031
    3. Luming Chen, Yulan Zhen, Guohua Zhang, et al. Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate. International Journal of Minerals, Metallurgy and Materials, 2022, 29(2): 239. DOI:10.1007/s12613-020-2160-7
    4. Mohamed Jaffer Sadiq Mohamed. Metal Tungstate Based Nanocomposites for Environmental Applications: Photocatalysis Mini-Review. Sensor Letters, 2020, 18(12): 853. DOI:10.1166/sl.2020.4306
    5. Alafara A. Baba, John O. Kayode, Mustapha A. Raji. Low-Energy Feasibility for Leaching an Indigenous Scheelite Ore for Industrial Applications. Journal of Sustainable Metallurgy, 2020, 6(4): 659. DOI:10.1007/s40831-020-00301-7

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (532) PDF downloads (24) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return