Tian Qiu, Jian-guo Yang, and Xue-jie Bai, Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 162-172. https://doi.org/10.1007/s12613-019-1859-9
Cite this article as:
Tian Qiu, Jian-guo Yang, and Xue-jie Bai, Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 162-172. https://doi.org/10.1007/s12613-019-1859-9
Research Article

Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite

+ Author Affiliations
  • Corresponding author:

    Jian-guo Yang    E-mail: scetyjg@126.com

  • Received: 11 April 2019Revised: 17 June 2019Accepted: 19 June 2019Available online: 18 January 2020
  • The thermodynamic and kinetic mechanisms of Taixi anthracite during its graphitization process were explored. To understand the variation trends of carbon arrangement order, microcrystal size, and graphitization degree against temperature during the graphitization process, a series of experiments were performed using Raman spectroscopy and X-ray diffraction (XRD). Subsequently, the influencing factors of the dominant reaction at different temperatures were analyzed using thermodynamics and kinetics. The results showed that the graphitization process of Taixi anthracite can be divided into three stages from the perspective of reaction thermodynamics and kinetics. Temperature played a crucial role in the formation and growth of a graphitic structure. Meanwhile, multivariate mechanisms coexisted in the graphitization process. At ultrahigh temperatures, the defects of synthetic graphite could not be completely eliminated and perfect graphite crystals could not be produced. At low temperatures, the reaction is mainly controlled by dynamics, while at high temperatures, thermodynamics dominates the direction of the reaction.
  • loading
  • [1]
    D.D.L. Chung, Review graphite, J. Mater. Sci., 37(2002), No. 8, p. 1475. doi: 10.1023/A:1014915307738
    [2]
    D.D.L. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing, Carbon, 50(2012), No. 9, p. 3342. doi: 10.1016/j.carbon.2012.01.031
    [3]
    S.W. Sharshir, G.L. Peng, L.R. Wu, F.A. Essa, A.E. Kabeel, and N. Yang, The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance, Appl. Energy, 191(2017), p. 358. doi: 10.1016/j.apenergy.2017.01.067
    [4]
    Y.N. Yang, Y. Pang, Y. Liu, and H.W. Guo, Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving, Mater. Lett., 216(2018), p. 220. doi: 10.1016/j.matlet.2018.01.025
    [5]
    L.F. Castañeda, F.C. Walsh, J.L. Nava, and C.P. de León, Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications, Electrochim. Acta., 258(2017), p. 1115. doi: 10.1016/j.electacta.2017.11.165
    [6]
    G.M. Butyrin, Density, porous structure, and gas-dynamic characteristics of finely grained graphites (a review), Solid Fuel Chem., 49(2015), No. 5, p. 304. doi: 10.3103/S0361521915050055
    [7]
    A.P. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, Graphite nanoplatelet−epoxy composite thermal interface materials, J. Phys. Chem. C, 111(2007), No. 21, p. 7565. doi: 10.1021/jp071761s
    [8]
    Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials, Phys. Rev. Lett., 84(2000), No. 8, p. 1744. doi: 10.1103/PhysRevLett.84.1744
    [9]
    S.C. Chelgani, M. Rudolph, R. Kratzsch, D. Sandmann, and J. Gutzmer, A review of graphite beneficiation techniques, Miner. Process. Extr. Metall. Rev., 37(2016), No. 1, p. 58. doi: 10.1080/08827508.2015.1115992
    [10]
    H.H. Cai, Y.S. Li, and X.L. Luo, The characteristics and prospect of reserves of graphite resources in China, China Min. Mag., 25(2016), No. S2, p. 5.
    [11]
    C.L. Ma, Y. Zhao, J. Li, Y. Song, J.L. Shi, Q.G. Guo, and L. Liu, Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries, Carbon, 64(2013), p. 553. doi: 10.1016/j.carbon.2013.07.089
    [12]
    D. Marchand, C. Fretigny, M. Lagues, A.P. Legrand, E. McRae, J.F. Mareche, and M. Lelaurain, Surface structure and electrical conductivity of natural and artificial graphites, Carbon, 22(1984), No. 6, p. 497. doi: 10.1016/0008-6223(84)90082-4
    [13]
    X.B. Fu, X.L. Song, and Y.M. Zhang, Facile preparation of graphene sheets from synthetic graphite, Mater. Lett., 70(2012), p. 181. doi: 10.1016/j.matlet.2011.12.002
    [14]
    M. Mundszinger, S. Farsi, M. Rapp, U. Golla-Schindler, U. Kaiser, and M. Wachtler, Morphology and texture of spheroidized natural and synthetic graphites, Carbon, 111(2017), p. 764. doi: 10.1016/j.carbon.2016.10.060
    [15]
    F.M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh, and I.J. Davidson, Water-soluble binders for MCMB carbon anodes for lithium-ion batteries, J. Power Sources, 196(2011), No. 4, p. 2128. doi: 10.1016/j.jpowsour.2010.10.025
    [16]
    C.L. Fan, H. He, K.H. Zhang and S.C. Han, Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity, Electrochim. Acta, 75(2012), p. 311. doi: 10.1016/j.electacta.2012.05.010
    [17]
    T. Liu, R.Y. Luo, S.H. Yoon, and I. Mochida, Anode performance of boron-doped graphites prepared from shot and sponge cokes, J. Power Sources, 195(2010), No. 6, p. 1714. doi: 10.1016/j.jpowsour.2009.08.104
    [18]
    S.L. Huang, H.J. Guo, X.H. Li, Z.X. Wang, L. Gan, J.X. Wang, and W. Xiao, Carbonization and graphitization of pitch applied for anode materials of high power lithium ion batteries, J. Solid State Electrochem, 17(2013), No. 5, p. 1401. doi: 10.1007/s10008-013-2003-9
    [19]
    T.S. Yeh, Y.S. Wu, and Y.H. Lee, Graphitization of unburned carbon from oil-fired fly ash applied for anode materials of high power lithium ion batteries, Mater. Chem. Phys., 130(2011), No. 1-2, p. 309. doi: 10.1016/j.matchemphys.2011.06.045
    [20]
    I. Cameán, P. Lavela, J.L. Tirado, and A.B. García, On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries, Fuel, 89(2010), No. 5, p. 986. doi: 10.1016/j.fuel.2009.06.034
    [21]
    S. Yang, I.J. Kim, I.S. Choi, M.K. Bae, and H.S. Kim, Influence of electrolytes (TEABF4 and TEMABF4) on electrochemical performance of graphite oxide derived from needle coke, J. Nanosci. Nanotechnol., 13(2013), No. 5, p. 3747. doi: 10.1166/jnn.2013.7331
    [22]
    J.A. Newell, D.D. Edie, and E.L. Fuller Jr, Kinetics of carbonization and graphitization of PBO fiber, J. Appl. Polym. Sci., 60(1996), No. 6, p. 825. doi: 10.1002/(SICI)1097-4628(19960509)60:6<825::AID-APP5>3.0.CO;2-L
    [23]
    C. Pantea, J. Qian, G.A. Voronin, and T.W. Zerda, High pressure study of graphitization of diamond crystals, J. Appl. Phys., 91(2002), No. 4, p. 1957. doi: 10.1063/1.1433181
    [24]
    J.Y. Zhu, S. Zhang, L.X. Wang, D.Z. Jia, M.J. Xu, Z.B. Zhao, J.S. Qiu, and L.X. Jia, Engineering cross-linking by coal-based graphene quantum dots toward tough, flexible, and hydrophobic electrospun carbon nanofiber fabrics, Carbon, 129(2018), p. 54. doi: 10.1016/j.carbon.2017.11.071
    [25]
    Y.T. Zhang, K.K. Li, S.Z. Ren, D.Y. Wang, A.N. Zhou, and J.S. Qiu, Metal-modified coal-based graphene composites and the photocatalytic performance, Imaging Sci. Photochem., 34(2016), No. 5, p. 475.
    [26]
    Q. Zhou, Z.B. Zhao, Y.T. Zhang, B. Meng, A.N. Zhou, and J.S. Qiu, Graphene sheets from graphitized anthracite coal: preparation, decoration, and application, Energy Fuels, 26(2012), No. 8, p. 5186. doi: 10.1021/ef300919d
    [27]
    D. González, M.A. Montes-Morán, I. Suárez-Ruiz, and A.B. Garcia, Structural characterization of graphite materials prepared from anthracites of different characteristics: a comparative analysis, Energy Fuels, 18(2004), No. 2, p. 365. doi: 10.1021/ef030144+
    [28]
    D. González, M.A. Montes-Morán and A.B. Garcia, Graphite materials prepared from an anthracite: a structural characterization, Energy Fuels, 17(2003), No. 5, p. 1324. doi: 10.1021/ef0300491
    [29]
    J.B. Geng and Q. Ji, Multi-perspective analysis of China's energy supply security, Energy, 64(2014), p. 541. doi: 10.1016/j.energy.2013.11.036
    [30]
    F. Gao, J.Y. Qu, Z.B. Zhao, Q. Zhou, B.B. Li, and J.S. Qiu, A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application, Carbon, 80(2014), p. 640. doi: 10.1016/j.carbon.2014.09.008
    [31]
    M. Cabielles, M.A. Montes-Morán, and A.B. Garcia, Structural study of graphite materials prepared by HTT of unburned carbon concentrates from coal combustion fly ashes, Energy Fuels, 22(2008), No. 2, p. 1239. doi: 10.1021/ef700603t
    [32]
    D.B. Fischbach, Kinetics of graphitization of a petroleum coke, Nature, 200(1963), No. 4913, p. 1281. doi: 10.1038/2001281a0
    [33]
    A. Oberlin, Pyrocarbons, Carbon, 40(2002), No. 1, p. 7. doi: 10.1016/S0008-6223(01)00138-5
    [34]
    J.N. Rouzaud and A. Oberlin, Structure, microtexture, and optical properties of anthracene and saccharose-based carbons, Carbon, 27(1989), No. 4, p. 517. doi: 10.1016/0008-6223(89)90002-X
    [35]
    K. Bratek, W. Bratek, I. Gerus-Piasecka, S. Jasieńko, and P. Wilk, Properties and structure of different rank anthracites, Fuel, 81(2002), No. 1, p. 97. doi: 10.1016/S0016-2361(01)00120-X
    [36]
    A. Oberlin and G. Terriere, Graphitization studies of anthracites by high resolution electron microscopy, Carbon, 13(1975), No. 5, p. 367. doi: 10.1016/0008-6223(75)90004-4
    [37]
    W. Ruland, X-ray studies on the structure of graphitic carbons, Acta Crystallogr., 18(1965), No. 6, p. 992. doi: 10.1107/S0365110X65002414
    [38]
    W. Li and Y.M. Zhu, Structural characteristics of coal vitrinite during pyrolysis, Energy Fuels, 28(2014), No. 6, p. 3645. doi: 10.1021/ef500300r
    [39]
    H. Badenhorst, Microstructure of natural graphite flakes revealed by oxidation: Limitations of XRD and Raman techniques for crystallinity estimates, Carbon, 66(2014), p. 674. doi: 10.1016/j.carbon.2013.09.065
    [40]
    L. Bokobza, J.L. Bruneel, and M. Couzi, Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black, Chem. Phys. Lett., 590(2013), p. 153. doi: 10.1016/j.cplett.2013.10.071
    [41]
    M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, and M. Endo, Origin of dispersive effects of the Raman D band in carbon materials, Phys. Rev. B, 59(1999), No. 10, p. R6585. doi: 10.1103/PhysRevB.59.R6585
    [42]
    Y. Wang, S. Serrano, and J.J. Santiago-Avilés, Raman characterization of carbon nanofibers prepared using electrospinning, Synth. Met., 138(2003), No. 3, p. 423. doi: 10.1016/S0379-6779(02)00472-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(8)

    Share Article

    Article Metrics

    Article Views(2700) PDF Downloads(87) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return