Xiao-hui Li, Jue Kou, Ti-chang Sun, Shi-chao Wu, and Yong-qiang Zhao, Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 301-309. https://doi.org/10.1007/s12613-019-1864-z
Cite this article as:
Xiao-hui Li, Jue Kou, Ti-chang Sun, Shi-chao Wu, and Yong-qiang Zhao, Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 301-309. https://doi.org/10.1007/s12613-019-1864-z
Research Article

Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate

+ Author Affiliations
  • Corresponding author:

    Jue Kou    E-mail: koujue@ustb.edu.cn

  • Received: 27 March 2019Revised: 20 May 2019Accepted: 18 June 2019Available online: 9 December 2019
  • Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate (VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reduction product, the order of the metallization rate of reduction product being CaCO3 > no additive > CaSO4 > CaCl2, which indicated that the addition of CaCO3 was more conducive to promoting the reduction of iron than other calcium compounds. Gas analysis showed that there were mainly two processes in the carbothermic reduction of VTC, a solid–solid and a solid–gas reaction. The concentrations of CO and CO2 were highest when CaCO3 was added, while that in a roasting system decreased the most when CaCl2 was added. X-ray diffraction (XRD) analysis showed that calcium compounds could change the reduction process of ilmenite in VTC. The phase compositions of the reduction products were changed from metallic iron (Fe) and anosovite (FeTi2O5) to metallic iron (Fe) and perovekite (CaTiO3) when calcium compounds were added. Additionally, CaSO4 and CaCl2 could significantly promote the growth of metallic iron particles, though the existence of Fe-bearing Mg2TiO4 in reduction products was not conducive to the reduction of iron. The formation of FeS would further hinder the reduction of iron after adding CaSO4.

  • loading
  • [1]
    F. Pan, Z. Du, M.J. Zhang, and H.Y. Sun, Relationship between the phases, structure, MgO migration and the reduction performance of the pre-oxidized vanadium-titanium magnetite ore in a fluidized bed, ISIJ Int., 57(2017), No. 3, p. 413. doi: 10.2355/isijinternational.ISIJINT-2016-499
    [2]
    M. Imtiaz, M. Rizwan, S.L. Xiong, H.L. Li, M. Ashraf, S. Shahzad, M. Shahzad, M. Rizwan, and S.X. Tua, Vanadium, recent advancements and research prospects: a review, Environ. Int., 80(2015), p. 79. doi: 10.1016/j.envint.2015.03.018
    [3]
    Y.Z. Xue, X.F. Wang, H.J. Wang, and W.C. Li, On comprehensive utilization of vanadium-titanium magnetite resources in panzhihua region of sichuan province, Nat. Resour. Econ. China, 30(2017), No. 4, p. 9.
    [4]
    H.X. Mao, R.D. Zhang, X.L. Lv, C.G. Bai, and X.B. Huang, Effect of surface properties of iron ores on their granulation behavior, ISIJ Int., 53(2013), No. 9, p. 1491. doi: 10.2355/isijinternational.53.1491
    [5]
    L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition, Miner. Eng., 20(2007), No. 7, p. 684. doi: 10.1016/j.mineng.2007.01.003
    [6]
    Z.H. Li, Z.C. Wang, and G. Li, Preparation of nano-titanium dioxide from ilmenite using sulfuric acid-decomposition by liquid phase method, Powder Technol., 287(2016), p. 256. doi: 10.1016/j.powtec.2015.09.008
    [7]
    Y. Sun, H.Y. Zheng, Y. Dong, X. Jiang, Y.S. Shen, and F.M. Shen, Melting and separation behavior of slag and metal phases in metallized pellets obtained from the direct-reduction process of vanadium-bearing titanomagnetite, Int. J. Miner. Process., 142(2015), p. 119. doi: 10.1016/j.minpro.2015.04.002
    [8]
    F.L. Yang and V. Hlavacek, Effective extraction of titanium from rutile by a low-temperature chloride process, AIChE J., 46(2000), No. 2, p. 355. doi: 10.1002/aic.690460213
    [9]
    W. Li, N. Wang, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Influence of roasting characteristics on gas-based direct reduction behavior of Hongge vanadium titanomagnetite pellet with simulated shaft furnace gases, Powder Technol., 310(2017), p. 343. doi: 10.1016/j.powtec.2017.01.062
    [10]
    W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, J. Tang, and Z.W. Ying, Reduction behavior of vanadium-titanium magnetite carbon composite hot briquette in blast furnace process, Powder Technol., 342(2019), p. 214. doi: 10.1016/j.powtec.2018.09.069
    [11]
    B.C. Jena, W. Dresler, and L.G. Reilly, Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada, Miner. Eng., 8(1995), No. 1-2, p. 159. doi: 10.1016/0892-6875(94)00110-X
    [12]
    T.Y. Hu, T.C. Sun, J. Kou, C. Geng, X.Q. Wang, and C. Chen, Recovering titanium and iron by co-reduction roasting of seaside titanomagnetite and blast furnace dust, Int. J. Miner. Process., 165(2017), p. 28. doi: 10.1016/j.minpro.2017.06.003
    [13]
    S. Samanta, M. Goswami, T.K. Baidya, S. Mukherjee, and R. Dey, Mineralogy and carbothermal reduction behavior of vanadium-bearing titaniferous magnetite ore in Eastern India, Int. J. Miner. Metall. Mater., 20(2013), No. 10, p. 917. doi: 10.1007/s12613-013-0815-3
    [14]
    G.M. Zhang, K.Q. Feng, and H.F. Yue, Theoretical analyses and experimental investigations of selective carbothermal reactions of vanadium-bearing titanomagnetite concentrates for preparation of iron-based wear-resistant material, JOM, 68(2016), No. 9, p. 2525. doi: 10.1007/s11837-016-2035-6
    [15]
    W. Yu, T.C. Sun, Q. Cui, C.Y. Xu, and J. Kou, Effect of coal type on the reduction and magnetic separation of a high-phosphorus oolitic hematite ore, ISIJ Int., 55(2015), No. 3, p. 536. doi: 10.2355/isijinternational.55.536
    [16]
    S.Y. Chen and M.S. Chu, Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 225. doi: 10.1007/s12613-014-0889-6
    [17]
    Y. Man, J.X. Feng, F.J. Li, Q. Ge, Y.M. Chen, and J.Z. Zhou, Influence of temperature and time on reduction behavior in iron ore-coal composite pellets, Powder Technol., 256(2014), p. 361. doi: 10.1016/j.powtec.2014.02.039
    [18]
    Y.Q. Zhao, T.C. Sun, H.Y. Zhao, C. Chen, and X.P. Wang, Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 152. doi: 10.1007/s12613-019-1719-7
    [19]
    C. Lv, K. Yang, S.M. Wen, S.J. Bai, and Q.C. Feng, A new technique for preparation of high-grade titanium slag from titanomagnetite concentrate by reduction-melting-magnetic separation processing, JOM., 69(2017), No. 10, p. 1801. doi: 10.1007/s11837-017-2507-3
    [20]
    L.Y. Yi, Z.C. Huang, and T. Jiang, Sticking of iron ore pellets during reduction with hydrogen and carbon monoxide mixtures: Behavior and mechanism, Powder Technol., 235(2013), p. 1001. doi: 10.1016/j.powtec.2012.11.043
    [21]
    D.S. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, and W.J. Wang, Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal, Miner. Eng., 24(2011), No. 8, p. 864. doi: 10.1016/j.mineng.2011.03.018
    [22]
    J.H. Zhang, W. Zhang, L. Zhang, and S.Q. Gu, Mechanism of vanadium slag roasting with calcium oxide, Int. J. Miner. Process., 138(2015), p. 20. doi: 10.1016/j.minpro.2015.03.007
    [23]
    T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction-electric furnace process, Metals, 6(2016), No. 5, p. 107. doi: 10.3390/met6050107
    [24]
    Z.G. Liu, M.S. Chu, H.T. Wang, W. Zhao, and X.X. Xue, Effect of MgO content in sinter on the softening-melting behavior of mixed burden made from chromium-bearing vanadium–titanium magnetite, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 25. doi: 10.1007/s12613-016-1207-2
    [25]
    C. Chen, T.C. Sun, X.P. Wang, and T.Y. Hu, Effects of MgO on the reduction of vanadium titanomagnetite concentrates with char, JOM, 69(2017), No. 10, p. 1759. doi: 10.1007/s11837-017-2388-5
    [26]
    C. Chen, T.C. Sun, J. Kou, and Y.Q. Zhao, Carbothermic reduction of vanadium titanomagnetite concentrate with magnesium compounds, Chin. J. Rare Met., 42(2018), No. 7, p. 765.
    [27]
    L.H. Zhou, Effects of CaO as an additive on the reduction of the vanadic-titanomagnetite-coal mixed pellets, J. Mater. Sci. Eng., 3(2010), No. 3, p. 345.
    [28]
    T. Jiang, J. Xu, S.F. Guan, and X.X. Xue, Study on coal-based direct reduction of high-chromium vanadium-titanium magnetite, J. Northeast. Univ. Nat. Sci., 36(2015), No. 1, p. 77.
    [29]
    S.M. Jung, Effects of CaO/CaCO3 on the carbothermic reduction of titanomagnetite ores, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1162. doi: 10.1007/s11663-015-0341-y
    [30]
    Y.Q. Zhao, T.C. Sun, H.Y. Zhao, X.H. Li, and X.P. Wang, Effects of CaCO3 as additive on coal-based reduction of high-phosphorus oolitic hematite ore, ISIJ Int., 58(2018), No. 10, p. 1768. doi: 10.2355/isijinternational.ISIJINT-2018-186
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2185) PDF Downloads(77) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return