Cite this article as: |
Zhuo Chen and Hou-fa Shen, Simulation of macrosegregation in a 36-t steel ingot using a multiphase model, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 200-209. https://doi.org/10.1007/s12613-019-1875-9 |
Hou-fa Shen E-mail: shen@tsinghua.edu.cn
[1] |
E.J. Pickering, Macrosegregation in steel ingots: The applicability of modelling and characterization techniques, ISIJ Int., 53(2013), No. 6, p. 935. doi: 10.2355/isijinternational.53.935
|
[2] |
M.C. Flemings, Our understanding of macrosegregation: Past and present, ISIJ Int., 40(2000), No. 9, p. 833. doi: 10.2355/isijinternational.40.833
|
[3] |
C. Prakash, Two-phase model for binary solid‒liquid phase change, Part I: governing equations, Numer. Heat Transfer Part B, 18(1990), p. 131. doi: 10.1080/10407799008944946
|
[4] |
J. Ni and C. Beckermann, A volume‒averaged two-phase model for transport phenomena during solidification, Metall. Trans. B, 22(1991), No. 3, p. 349. doi: 10.1007/BF02651234
|
[5] |
A. Ludwig and M.H. Wu, Modeling the columnar-to-equiaxed transition with a three-phase Eulerian approach, Mater. Sci. Eng. A, 413-414(2005), p. 109. doi: 10.1016/j.msea.2005.08.184
|
[6] |
H. Combeau, M. Založnik, S. Hans, and P.E. Richy, Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains, Metall. Mater. Trans. B, 40(2009), No. 3, p. 289. doi: 10.1007/s11663-008-9178-y
|
[7] |
M. Wu, A. Fjeld, and A. Ludwig, Modelling mixed columnar‒equiaxed solidification with melt convection and grain sedimentation–Part I: Model description, Comput. Mater. Sci., 50(2010), No. 1, p. 32. doi: 10.1016/j.commatsci.2010.07.005
|
[8] |
M. Wu, A. Fjeld, and A. Ludwig, Modelling mixed columnar—equiaxed solidification with melt convection and grain sedimentation—Part II: Illustrative modelling results and parameter studies, Comput. Mater. Sci., 50(2010), No. 1, p. 43. doi: 10.1016/j.commatsci.2010.07.006
|
[9] |
M. Wu, A. Ludwig, and A. Kharicha, A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot, Appl. Math. Modell., 41(2017), p. 102. doi: 10.1016/j.apm.2016.08.023
|
[10] |
Z.H. Duan, W.T. Tu, B.Z. Shen, H.F. Shen, and B.C. Liu, Experimental measurements for numerical simulation of macrosegregation in a 36-ton steel ingot, Metall. Mater. Trans. A, 47(2016), No. 7, p. 3597. doi: 10.1007/s11661-016-3531-6
|
[11] |
W.T. Tu, Z.H. Duan, B.Z. Shen, H.F. Shen, and B.C. Liu, Three-dimensional simulation of macrosegregation in a 36-ton steel ingot using a multicomponent multiphase model, JOM, 68(2016), No. 12, p. 3116. doi: 10.1007/s11837-016-2023-x
|
[12] |
M.H. Wu, A. Ludwig, and A. Kharicha, Simulation of as-cast steel ingots, Steel Res. Int., 89(2018), No. 1, p. art. No. 1700037.
|
[13] |
W.S. Li, H.F. Shen, and B.C. Liu, Numerical simulation of macrosegregation in steel ingots using a two-phase model, Int. J. Miner. Metall. Mater., 19(2012), No. 9, p. 787. doi: 10.1007/s12613-012-0629-8
|
[14] |
W.T. Tu, H.F. Shen, and B.C. Liu, Two-phase modeling of macrosegregation in a 231t steel ingot, ISIJ Int., 54(2014), No. 2, p. 351. doi: 10.2355/isijinternational.54.351
|
[15] |
A. Ludwig and M.H. Wu, Modeling of globular equiaxed solidification with a two-phase approach, Metall. Mater. Trans. A, 33(2002), No. 12, p. 3673. doi: 10.1007/s11661-002-0241-z
|
[16] |
J.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic, Mater. Sci. Eng., 65(1984), No. 1, p. 75. doi: 10.1016/0025-5416(84)90201-5
|