Zhuo Chen and Hou-fa Shen, Simulation of macrosegregation in a 36-t steel ingot using a multiphase model, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 200-209. https://doi.org/10.1007/s12613-019-1875-9
Cite this article as:
Zhuo Chen and Hou-fa Shen, Simulation of macrosegregation in a 36-t steel ingot using a multiphase model, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 200-209. https://doi.org/10.1007/s12613-019-1875-9
Research Article

Simulation of macrosegregation in a 36-t steel ingot using a multiphase model

+ Author Affiliations
  • Corresponding author:

    Hou-fa Shen    E-mail: shen@tsinghua.edu.cn

  • Received: 14 February 2019Revised: 13 May 2019Accepted: 14 May 2019Available online: 13 December 2019
  • Macrosegregation is the major defect in large steel ingots caused by solute partitioning and melt convection during casting. In this study, a three-phase (liquid, columnar dendrites, and equiaxed grains) model is proposed to simulate macrosegregation in a 36-t steel ingot. A supplementary set of conservation equations are employed in the model such that two types of equiaxed grains, either settling or adhering to the solid shell, are well simulated. The predicted concentration agrees quantitatively with the experimental value. A negative segregation cone was located at the bottom owing to the grain settlement and solute-enriched melt leaving from the mushy zone. The interdendritic liquid flow was carefully analyzed, and the formation of A-type segregations in the mid-height of the ingot is discussed. Negative segregation was observed near the riser neck due to the specific relationship between flow direction and temperature gradient. Additionally, the as-cast macrostructure of the ingot is presented, including the grain size distribution and columnar–equiaxed transition.
  • loading
  • [1]
    E.J. Pickering, Macrosegregation in steel ingots: The applicability of modelling and characterization techniques, ISIJ Int., 53(2013), No. 6, p. 935. doi: 10.2355/isijinternational.53.935
    [2]
    M.C. Flemings, Our understanding of macrosegregation: Past and present, ISIJ Int., 40(2000), No. 9, p. 833. doi: 10.2355/isijinternational.40.833
    [3]
    C. Prakash, Two-phase model for binary solid‒liquid phase change, Part I: governing equations, Numer. Heat Transfer Part B, 18(1990), p. 131. doi: 10.1080/10407799008944946
    [4]
    J. Ni and C. Beckermann, A volume‒averaged two-phase model for transport phenomena during solidification, Metall. Trans. B, 22(1991), No. 3, p. 349. doi: 10.1007/BF02651234
    [5]
    A. Ludwig and M.H. Wu, Modeling the columnar-to-equiaxed transition with a three-phase Eulerian approach, Mater. Sci. Eng. A, 413-414(2005), p. 109. doi: 10.1016/j.msea.2005.08.184
    [6]
    H. Combeau, M. Založnik, S. Hans, and P.E. Richy, Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains, Metall. Mater. Trans. B, 40(2009), No. 3, p. 289. doi: 10.1007/s11663-008-9178-y
    [7]
    M. Wu, A. Fjeld, and A. Ludwig, Modelling mixed columnar‒equiaxed solidification with melt convection and grain sedimentation–Part I: Model description, Comput. Mater. Sci., 50(2010), No. 1, p. 32. doi: 10.1016/j.commatsci.2010.07.005
    [8]
    M. Wu, A. Fjeld, and A. Ludwig, Modelling mixed columnar—equiaxed solidification with melt convection and grain sedimentation—Part II: Illustrative modelling results and parameter studies, Comput. Mater. Sci., 50(2010), No. 1, p. 43. doi: 10.1016/j.commatsci.2010.07.006
    [9]
    M. Wu, A. Ludwig, and A. Kharicha, A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot, Appl. Math. Modell., 41(2017), p. 102. doi: 10.1016/j.apm.2016.08.023
    [10]
    Z.H. Duan, W.T. Tu, B.Z. Shen, H.F. Shen, and B.C. Liu, Experimental measurements for numerical simulation of macrosegregation in a 36-ton steel ingot, Metall. Mater. Trans. A, 47(2016), No. 7, p. 3597. doi: 10.1007/s11661-016-3531-6
    [11]
    W.T. Tu, Z.H. Duan, B.Z. Shen, H.F. Shen, and B.C. Liu, Three-dimensional simulation of macrosegregation in a 36-ton steel ingot using a multicomponent multiphase model, JOM, 68(2016), No. 12, p. 3116. doi: 10.1007/s11837-016-2023-x
    [12]
    M.H. Wu, A. Ludwig, and A. Kharicha, Simulation of as-cast steel ingots, Steel Res. Int., 89(2018), No. 1, p. art. No. 1700037.
    [13]
    W.S. Li, H.F. Shen, and B.C. Liu, Numerical simulation of macrosegregation in steel ingots using a two-phase model, Int. J. Miner. Metall. Mater., 19(2012), No. 9, p. 787. doi: 10.1007/s12613-012-0629-8
    [14]
    W.T. Tu, H.F. Shen, and B.C. Liu, Two-phase modeling of macrosegregation in a 231t steel ingot, ISIJ Int., 54(2014), No. 2, p. 351. doi: 10.2355/isijinternational.54.351
    [15]
    A. Ludwig and M.H. Wu, Modeling of globular equiaxed solidification with a two-phase approach, Metall. Mater. Trans. A, 33(2002), No. 12, p. 3673. doi: 10.1007/s11661-002-0241-z
    [16]
    J.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic, Mater. Sci. Eng., 65(1984), No. 1, p. 75. doi: 10.1016/0025-5416(84)90201-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1332) PDF Downloads(53) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return