Sergei Galyshev, Andrew Gomzin, Rida Gallyamova, Igor Khodos, and Fanil Musin, On the liquid-phase technology of carbon fiber/aluminum matrix composites, Int. J. Miner. Metall. Mater., 26(2019), No. 12, pp. 1578-1584. https://doi.org/10.1007/s12613-019-1877-7
Cite this article as:
Sergei Galyshev, Andrew Gomzin, Rida Gallyamova, Igor Khodos, and Fanil Musin, On the liquid-phase technology of carbon fiber/aluminum matrix composites, Int. J. Miner. Metall. Mater., 26(2019), No. 12, pp. 1578-1584. https://doi.org/10.1007/s12613-019-1877-7
Research Article

On the liquid-phase technology of carbon fiber/aluminum matrix composites

+ Author Affiliations
  • Corresponding author:

    Sergei Galyshev    E-mail: galyshew@gmail.com

  • Received: 7 December 2018Revised: 14 May 2019Accepted: 15 May 2019
  • The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers' surface. This paper aims to solve these problems. The theoretical and experimental dependence of porosity on the applied pressure were determined. The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown. The correlation among the strength of the carbon fiber reinforced aluminum matrix composite, the fracture surface, and the degradation of the carbon fiber surface was discussed.
  • loading
  • [1]
    X. Meng, Y. Choi, K. Matsugi, Z.F. Xu, and W.C. Liu, Microstructures of carbon fiber and hybrid carbon fiber-carbon nanofiber reinforced aluminum matrix composites by low pressure infiltration process and their properties, Mater. Trans., 59(2018), No. 12, p. 1935.
    [2]
    M. Deshpandea, R. Gondila, R. Waikara, S.V.S.N. Murtyb, and T.S. Mahatac, Processing and characterization of carbon fiber reinforced aluminium7075, Mater. Today Proc., 5(2018), No. 2, p. 7115.
    [3]
    J.T. Xiong, H. Zhang, Y. Peng, J.L. Li, and F.S. Zhang, Fabrication and characterization of plasma-sprayed carbon-fiber-reinforced aluminum composites, J. Therm. Spray Technol., 27(2018), No. 4, p. 727.
    [4]
    T.A. Chernyshova, L.I. Kobeleva, P. Shebo, and A.V. Panfilov, Interaction of Metallic Melts with Reinforcing Fillers, Nauka, Moscow, 1993, p. 272.
    [5]
    M.H. Vidal-Setif, M. Lancin, C. Marhic, R. Valle, J.L. Raviart, J.C. Daux, and M. Rabinovitch, On the role of brittle interfacial phases on the mechanical properties of carbon fibre reinforced Al-based matrix composites, Mater. Sci. Eng. A, 272(1999), No. 2, p. 321.
    [6]
    A. Mortensen, L.J. Masur, J.A. Cornie, and M.C. Flemings, Infiltration of fibrous preforms by a pure metal:Part I. Theory. Metall. Trans. A, 20(1989), No. 11, p. 2535.
    [7]
    V.J. Michaud, L.M. Compton, and A. Mortensen, Capillarity in isothermal infiltration of alumina fiber preforms with aluminum, Metall. Mater. Trans. A, 25(1994), No. 10, p. 2145.
    [8]
    L.J. Masur, A. Mortensen, J.A. Cornie, and M.C. Flemings, Infiltration of fibrous preforms by a pure metal:Part II. Experiment, Metall. Trans. A, 20(1989), No. 11, p. 2549.
    [9]
    R.J. Brooks and A.T. Corey, Hydraulic properties of porous media, Colorado State University, Fort Collins, 1964, p. 37.
    [10]
    M. Gude and A. Boczkowska, Textile Reinforced Carbon Fibre/aluminium Matrix Composites for Lightweight Applications, Foundry Research Institute, Cracow, 2014, p. 235.
    [11]
    I. Tzanakis, W.W. Xu, D.G. Eskin, P.D. Lee, and N. Kotsovinos, In situ observation and analysis of ultrasonic capillary effect in molten aluminium, Ultrason. Sonochem., 27(2015), p. 72.
    [12]
    T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki, and M. Yoshida, Infiltration mechanism of molten aluminum alloys into bundle of carbon fibers using ultrasonic infiltration method, J. Jpn. Inst. Light Met., 56(2006), No. 4, p. 226.
    [13]
    O.B. Kudryashovaa, D.G. Eskinb, A.P. Khrustalyov, and S.A. Vorozhtsov, Ultrasonic effect on the penetration of the metallic melt into submicron particles and their agglomerates, Russ. J. Non-Ferrous Met., 58(2017), No. 4, p. 427.
    [14]
    T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki, and M. Yoshida, Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method, Composites Part A, 38(2007), No. 3, p. 771.
    [15]
    T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki, and M. Yoshida, Fabrication of continuous carbon fiber-reinforced aluminum-magnesium alloy composite wires using ultrasonic infiltration method, Composites Part A, 38(2007), No. 8, p. 1902.
    [16]
    T. Matsunaga, K. Matsuda, T. Hatayama, K. Shinozaki, S. Amanuma, P. Jin, and M. Yoshida, Development in manufacturing of carbon fiber reinforced aluminum preform wires using ultrasonic infiltration method, J. Jpn. Inst. Light Met., 56(2006), No. 1, p. 28.
    [17]
    S.T. Mileiko, Metal and Ceramic Based Composite, Elsevier, Amsterdam, 1997, p. 690.
    [18]
    S.L. Li, L.H. Qi, T. Zhang, J.M. Zhou, and H.J. Li, Microstructure and tensile behavior of 2D-Cf/AZ91D composites fabricated by liquid-solid extrusion and vacuum pressure infiltration, J. Mater. Sci. Technol., 33(2017), No. 6, p. 541.
    [19]
    S.L. Li, L.H Qi, T. Zhang, L.Y. Ju, and H.J. Li, Interfacial microstructure and mechanical properties of Cf/AZ91D composites with TiO2 and PyC fiber coatings, Micron, 101(2017), p. 170.
    [20]
    X. Wang, D.M. Jiang, G.H. Wu, B. Li, and P.Z. Li, Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite, Mater. Sci. Eng. A, 497(2008), No. 1-2, p. 31.
    [21]
    Y.H. Zhang and G.H. Wu, Comparative study on the interface and mechanical properties of T700/Al and M40/Al composites, Rare Met., 29(2010), No. 1, p. 102.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(722) PDF Downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return