Fabiane Carvalho Ballotin, Mayra Nascimento, Sara Silveira Vieira, Alexandre Carvalho Bertoli, Ottávio Carmignano, Ana Paula de Carvalho Teixeira, and Rochel Montero Lago, Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 46-54. https://doi.org/10.1007/s12613-019-1891-9
Cite this article as:
Fabiane Carvalho Ballotin, Mayra Nascimento, Sara Silveira Vieira, Alexandre Carvalho Bertoli, Ottávio Carmignano, Ana Paula de Carvalho Teixeira, and Rochel Montero Lago, Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 46-54. https://doi.org/10.1007/s12613-019-1891-9
Research Article

Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production

+ Author Affiliations
  • Corresponding author:

    Rochel Montero Lago    E-mail: rochel@ufmg.br

  • Received: 28 April 2019Revised: 1 August 2019Accepted: 8 August 2019Available online: 19 December 2019
  • In this work, different magnesium silicate mineral samples based on antigorite, lizardite, chrysotile (which have the same general formula Mg3Si2O5(OH)4), and talc (Mg3Si4O10(OH)2) were reacted with KOH to prepare catalysts for biodiesel production. Simple impregnation with 20wt% K and treatment at 700–900°C led to a solid-state reaction to mainly form the K2MgSiO4 phase in all samples. These results indicate that the K ion can diffuse into the different Mg silicate structures and textures, likely through intercalation in the interlayer space of the different mineral samples followed by dehydroxylation and K2MgSiO4 formation. All the materials showed catalytic activity for the transesterification of soybean oil (1:6 of oil : methanol molar ratio, 5wt% of catalyst, 60°C). However, the best results were obtained for the antigorite and chrysotile precursors, which are discussed in terms of mineral structure and the more efficient formation of the active phase K2MgSiO4.

  • loading
  • [1]
    A.L. Auzende, I. Daniel, B. Reynard, C. Lemaire, and F. Guyot, High-pressure behavior of serpentine minerals: A Raman spectroscopic study, Phys. Chem. Miner., 31(2004), No. 5, p. 269. doi: 10.1007/s00269-004-0384-0
    [2]
    S. Guillot, S. Schwartz, B. Reynard, P. Agard, and C. Prigent, Tectonic significance of serpentinites, Tectonophysics, 646(2015), p. 1. doi: 10.1016/j.tecto.2015.01.020
    [3]
    B.W. Evans, K. Hattori, and A. Baronnet, Serpentinite: what, why, where? Elements, 9(2013), No. 2, p. 99.
    [4]
    B.T. Mossman, J. Bignon, M. Corn, A. Seaton, and J.B. Gee, Asbestos: scientific developments and implications for public policy, Science, 247(1990), No. 4940, p. 294. doi: 10.1126/science.2153315
    [5]
    G.C. Capitani and M. Mellini, The crystal structure of a second antigorite polysome (m = 16), by single-crystal synchrotron diffraction, Am. Mineral., 91(2006), No. 2-3, p. 394. doi: 10.2138/am.2006.1919
    [6]
    M. Claverie, A. Dumas, C. Carême, M. Poirier, C. Le Roux, P. Micoud, F. Martin, and C. Aymonier, Synthetic talc and talc-like structures: Preparation, features and applications, Chemistry, 24(2018), No. 3, p. 519. doi: 10.1002/chem.201702763
    [7]
    S.S. Vieira, G.M. Paz, A.P.C. Teixeira, E.M. Moura, O.R. Carmignano, R.C.O. Sebastião, and R.M. Lago, Solid state reaction of serpentinite Mg3Si2O5(OH)4 with Li+ to produce Li4SiO4/MgO composites for the efficient capture of CO2, J. Environ. Chem. Eng., 6(2018), No. 4, p. 4189. doi: 10.1016/j.jece.2018.06.026
    [8]
    G.M. Paz, S.S. Vieira, A.C. Bertoli, F.C. Ballotin, E.M. de Moura, A.P.C. Teixeira, D. Costa, O. Carmignano, and R.M. Lago, Solid state reaction of serpentinite Mg3Si2O5(OH)4 with NaOH to produce a new basic catalytic phase Na2Mg2Si2O7 for biodiesel production, J. Braz. Chem. Soc., 29(2018), No. 9, p. 1823. doi: 10.21577/0103-5053.20180058
    [9]
    F.C. Ballotin, T.E. Cibaka, T.A. Ribeiro-Santos, E.M. Santos, A.P. de Carvalho Teixeira, and R.M. Lago, K2MgSiO4: A novel K+-trapped biodiesel heterogeneous catalyst produced from serpentinite Mg3Si2O5(OH)4, J. Mol. Catal. A:Chem., 422(2016), p. 258. doi: 10.1016/j.molcata.2016.02.006
    [10]
    U. Schuchardt, R. Sercheli, and R.M. Vargas, Transesterification of vegetable oils: A review, J. Braz. Chem. Soc., 9(1998), No. 3, p. 199. doi: 10.1590/S0103-50531998000300002
    [11]
    A.P.C. Teixeira, E.M. Santos, A.F.P. Vieira, and R.M. Lago, Use of chrysotile to produce highly dispersed K-doped MgO catalyst for biodiesel synthesis, Chem. Eng. J., 232(2013), p. 104. doi: 10.1016/j.cej.2013.07.065
    [12]
    A. Shakoor and N.L. Thomas, Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites, Polym. Eng. Sci., 54(2014), No. 1, p. 64. doi: 10.1002/pen.23543
    [13]
    R.G. Coleman, Petrologic and geophysical nature of serpentinites, Geol. Soc. Am. Bull., 82(1971), No. 4, p. 897. doi: 10.1130/0016-7606(1971)82[897:PAGNOS]2.0.CO;2
    [14]
    M. Wesołowski, Thermal decomposition of talc: A review, Thermochim. Acta, 78(1984), No. 1-3, p. 395. doi: 10.1016/0040-6031(84)87165-8
    [15]
    M.D. Menzel, C.J. Garrido, V.L. Sánchez-Vizcaíno, C. Marchesi, K. Hidas, M.P. Escayola, and A.D. Huertas, Carbonation of mantle peridotite by CO2-rich fluids: The formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada), Lithos, 323(2018), p. 238. doi: 10.1016/j.lithos.2018.06.001
    [16]
    X. Liu, X. Liu, and Y. Hu, Investigation of the thermal decomposition of talc, Clays Clay Miner., 62(2014), No. 2, p. 137. doi: 10.1346/CCMN.2014.0620206
    [17]
    C. Viti, Serpentine minerals discrimination by thermal analysis, Am. Mineral., 95(2010), No. 4, p. 631. doi: 10.2138/am.2010.3366
    [18]
    H. Maleki, M. Kazemeini, and F. Bastan, Transesterification of canola oil to biodiesel using CaO/Talc nanopowder as a mixed oxide catalyst, Chem. Eng. Technol., 40(2017), No. 10, p. 1923. doi: 10.1002/ceat.201600579
    [19]
    A.F. Gualtieri, N.B. Gandolfi, S. Pollastri, M. Burghammer, E. Tibaldi, F. Belpoggi, K. Pollok, F. Langenhorst, R. Vigliaturo, and G. Dražić, New insights into the toxicity of mineral fibers: A combined in situ synchrotron μ-XRD and HR-TEM study of chrysotile, crocidolite, and erionite fibers found in the tissues of Sprague-Dawley rats, Toxicol. Lett., 274(2017), p. 20. doi: 10.1016/j.toxlet.2017.04.004
    [20]
    C.M. Yarborough, The risk of mesothelioma from exposure to chrysotile asbestos, Curr. Opin. Pulm. Med., 13(2007), No. 4, p. 334. doi: 10.1097/MCP.0b013e328121446c
    [21]
    B. Ersoy, S. Dikmen, A. Yildiz, R. Gören, and Ö. Elitok, Mineralogical and physicochemical properties of talc from Emirdağ, Afyonkarahisar, Turk. J. Earth Sci., 22(2013), No. 4, p. 632.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1625) PDF Downloads(54) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return