Guan-nan Zhang, Xiao Yang, Zeng-chao Yang, Yong Li, Gang He, and Jiang-tao Li, Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 244-251. https://doi.org/10.1007/s12613-019-1892-8
Cite this article as:
Guan-nan Zhang, Xiao Yang, Zeng-chao Yang, Yong Li, Gang He, and Jiang-tao Li, Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 244-251. https://doi.org/10.1007/s12613-019-1892-8
Research Article

Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis

+ Author Affiliations
  • Corresponding author:

    Xiao Yang    E-mail: yangxiao@mail.ipc.ac.cn

  • Received: 5 May 2019Revised: 30 July 2019Accepted: 8 August 2019Available online: 17 December 2019
  • The WC/CoCrFeNiAl0.2 high-entropy alloy (HEA) composites were prepared through high-gravity combustion synthesis. The preparation method is presented below. First, using a designed suitable multiphase thermite system, the molten CoCrFeNiAl0.2 HEA was fabricated using low-cost metal oxides. The molten HEA was subsequently infiltrated into the WC layer to fabricate WC/CoCrFeNiAl0.2 composites in a high-gravity field. The porosity of the WC/CoCrFeNiAl0.2 composites was down-regulated, and their compressive yield strength was up-regulated when the high-gravity field was increased from 600g

    to 1500g

    because this infiltration process of a HEA melt into the WC layer is driven by centrifugal force. The WC particles in the composites exhibited a gradient distribution along the direction of the centrifugal force, which was attributed to the combined action of the high-gravity field and the temperature gradient field. The Vickers hardness of the sample was down-regulated from 9.53 to 7.41 GPa along the direction of the centrifugal force.

  • loading
  • [1]
    H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps, William Andrew, New Jersey, 1996, p. 100.
    [2]
    G.S. Upadhyaya, Cemented Tungsten Carbides: Production, Properties, and Testing, William Andrew, New Jersey, 1998, p. 1.
    [3]
    C.M. Fernandes and A.M.R. Senos, Cemented carbide phase diagrams: a review, Int. J. Refract. Met. Hard Mater., 29(2011), No. 4, p. 405. doi: 10.1016/j.ijrmhm.2011.02.004
    [4]
    M. Aristizabl, N. Rodriguez, F. Ibarreta, R. Martinez, and J. M. Sanchez, Liquid phase sintering and oxidation resistance of WC–Ni–Co–Cr cemented carbides, Int. J. Refract. Met. Hard Mater., 28(2010), No. 4, p. 516. doi: 10.1016/j.ijrmhm.2010.02.010
    [5]
    E. Ghasali, T. Ebadzadeh, M. Alizadeh, and M. Razavi, Mechanical and microstructural properties of WC-based compositess: A comparative study on the effect of Ni and Mo binder phases, Ceram. Int., 44(2018), No. 2, p. 2283. doi: 10.1016/j.ceramint.2017.10.189
    [6]
    H.Y. Rong, Z.J. Peng, X.Y. Ren, Y. Peng, C.B. Wang, Z.Q. Fu, L.H. Qi, and H.Z. Miao, Ultrafine WC–Ni cemented carbides fabricated by spark plasma sintering, Mater. Sci. Eng. A, 532(2012), p. 543. doi: 10.1016/j.msea.2011.10.119
    [7]
    Z.Y. Zhao, J.W. Liu, H.G. Tang, X.F. Ma, and W. Zhao, Investigation on the mechanical properties of WC–Fe–Cu hard alloys, J. Alloys Compd., 632(2015), p. 729. doi: 10.1016/j.jallcom.2015.01.300
    [8]
    I.J. Shao, K.I. Na, I.Y. Ko, J.M. Doh, and J.K. Yoon, Effect of FeAl3 on properties of (W, Ti)C–FeAl3 hard materials consolidated by a pulsed current activated sintering method, Ceram. Int., 38(2012), No. 6, p. 5133. doi: 10.1016/j.ceramint.2012.03.017
    [9]
    C.S. Chen, C.C. Yang, H.Y. Chai, J.W. Yeh, and J.L.H. Chau, Novel composites material of WC/multi-element alloy, Int. J. Refract. Met. Hard Mater., 43(2014), p. 200. doi: 10.1016/j.ijrmhm.2013.11.005
    [10]
    W.Y. Luo, Y.Z. Liu, Y. Luo, and M. Wu, Fabrication and characterization of WC–AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering, J. Alloys Compd., 754(2018), p. 163. doi: 10.1016/j.jallcom.2018.04.270
    [11]
    I.L. Velo, F.J. Gotor, M.D. Alcal, C. Real, and J.M. Córdoba, Fabrication and characterization of HEA–WC cemented carbide based on the CoCrFeNiMn high-entropy alloy, J. Alloys Compd., 746(2018), p. 1. doi: 10.1016/j.jallcom.2018.02.292
    [12]
    J.Y. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloy with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
    [13]
    X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2-3, p. 233. doi: 10.1016/j.matchemphys.2011.11.021
    [14]
    O. Senkov, S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloy, Acta Mater., 68(2014), p. 214. doi: 10.1016/j.actamat.2014.01.029
    [15]
    P. Zhao, S.B. Guo, G.H. Liu, Y.X. Chen, and J.T. Li, Fabrication of W–Cu functionally graded material with improved mechanical strength, J. Alloys Compd., 601(2014), p. 289. doi: 10.1016/j.jallcom.2014.01.180
    [16]
    R.X. Lia, P.K. Liaw, and Y. Zhang, Synthesis of AlxCoCrFeNi high-entropy alloy by high-gravity combustion from oxides, Mater. Sci. Eng. A, 707(2017), p. 668. doi: 10.1016/j.msea.2017.09.101
    [17]
    G.H. Liu, J.T. Li, and K.X. Chen, One-step preparation of dense TiC1–xNx–Ni3Ti composites by combustion synthesis, Mater. Des., 87(2015), p. 6. doi: 10.1016/j.matdes.2015.07.179
    [18]
    G.H. Liu, J.T. Li, Z.C. Yang, S.B. Guo, and Y.X. Chen, High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides, Scripta Mater., 69(2013), No. 8, p. 642. doi: 10.1016/j.scriptamat.2013.07.022
    [19]
    Y. Xu, Z.C. Yang, H. Zhao, G.H. Liu, and J.T. Li, Fabrication of Ni/WC composite with two distinct layers through centrifugal infiltration combined with a thermite reaction, Ceram. Int., 40(2014), No. 1, p. 1037. doi: 10.1016/j.ceramint.2013.06.101
    [20]
    P. Zhao, S. Guo, G.H. Liu, Y.X. Chen, and J.T. Li, Fast fabrication of W–Cu functionally graded material by high-gravity combustion synthesis and melt-infiltration, J. Nucl. Mater., 445(2014), No. 1-3, p. 26. doi: 10.1016/j.jnucmat.2013.10.032
    [21]
    V. Martínez and J. Echeberria, Hot isostatic pressing of cubic boron nitrideetungsten carbide/cobalt (cBN–WC/Co) composites: Effect of cBN particle size and some processing parameters on their microstructure and properties, J. Am. Ceram. Soc., 90(2007), No. 2, p. 415. doi: 10.1111/j.1551-2916.2006.01426.x
    [22]
    J. Pei, J.T. Li, G.H. Liu, and K.X. Chen, Fabrication of bulk Al2O3 by combustion synthesis melt-casting under ultra-high-gravity, J. Alloys Compd., 476(2009), No. 1-2, p. 854. doi: 10.1016/j.jallcom.2008.09.166
    [23]
    R. Zhou, G. Chen, B. Liu, J.W. Wang, L.L. Han, and Y. Liu, Microstructures and wear behaviour of (FeCoCrNi)1–x(WC)x high-entropy alloy composites, Int. J. Refract. Met. Hard Mater., 75(2018), p. 56. doi: 10.1016/j.ijrmhm.2018.03.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1678) PDF Downloads(47) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return